TY - JOUR
T1 - Dissociating affordance and spatial compatibility effects using a pantomimed reaching action.
AU - Couth, Samuel
AU - Gowen, Emma
AU - Poliakoff, Ellen
PY - 2014
Y1 - 2014
N2 - Previous research has demonstrated faster reaction times in response to appropriately oriented action-inducing stimuli (affordance effect, e.g. Tucker and Ellis in J Exp Psychol Hum Percept Perform 24:830-846, 1998). However, it has been argued that faster responses may be due to a spatial compatibility effect. In the current investigation, we aimed to dissociate the affordance and spatial compatibility effects. Moreover, we explored these effects beyond button-press responses by measuring detailed kinematics of the arms and hands during a naturalistic reach response. Participants were presented with images of a door handle (affording) or an abstract (non-affording) stimulus and made a pantomimed reach response with either hand depending on a colour change of the stimulus (i.e. Blue = left, Green = right). Stimuli could be aligned as spatially compatible or incompatible with the responding hand. The colour change occurred after a delay of 0, 500 or 1,000 ms. Only spatially compatible affordance stimuli facilitated reach onset compared to other stimuli and compatibility combinations, replicating previous reaction time studies. Therefore, in the absence of graspable stimuli, spatial compatibility alone was not sufficient to facilitate reach onset. There was also a larger outwards deviation of reach trajectory for spatially incompatible abstract stimuli compared to spatially compatible abstract stimuli, which waned with stimulus onset delay. However, no such affect was observed for the affording stimuli. Accordingly, later kinematics of the reaching action was influenced by the spatial compatibility of the stimulus alone. Overall, the dissociation of affordance and spatial compatibility effects suggests that these effects are driven by visuomotor priming and the inhibition of the incompatible spatial location, respectively.
AB - Previous research has demonstrated faster reaction times in response to appropriately oriented action-inducing stimuli (affordance effect, e.g. Tucker and Ellis in J Exp Psychol Hum Percept Perform 24:830-846, 1998). However, it has been argued that faster responses may be due to a spatial compatibility effect. In the current investigation, we aimed to dissociate the affordance and spatial compatibility effects. Moreover, we explored these effects beyond button-press responses by measuring detailed kinematics of the arms and hands during a naturalistic reach response. Participants were presented with images of a door handle (affording) or an abstract (non-affording) stimulus and made a pantomimed reach response with either hand depending on a colour change of the stimulus (i.e. Blue = left, Green = right). Stimuli could be aligned as spatially compatible or incompatible with the responding hand. The colour change occurred after a delay of 0, 500 or 1,000 ms. Only spatially compatible affordance stimuli facilitated reach onset compared to other stimuli and compatibility combinations, replicating previous reaction time studies. Therefore, in the absence of graspable stimuli, spatial compatibility alone was not sufficient to facilitate reach onset. There was also a larger outwards deviation of reach trajectory for spatially incompatible abstract stimuli compared to spatially compatible abstract stimuli, which waned with stimulus onset delay. However, no such affect was observed for the affording stimuli. Accordingly, later kinematics of the reaching action was influenced by the spatial compatibility of the stimulus alone. Overall, the dissociation of affordance and spatial compatibility effects suggests that these effects are driven by visuomotor priming and the inhibition of the incompatible spatial location, respectively.
KW - Spatial compatibility
KW - Affordance
KW - Kinematics
KW - Visuomotor
U2 - 10.1007/s00221-013-3798-4
DO - 10.1007/s00221-013-3798-4
M3 - Article
C2 - 24337351
SN - 1432-1106
VL - 232
SP - 855
EP - 864
JO - Experimental brain research
JF - Experimental brain research
IS - 3
ER -