TY - JOUR
T1 - DNA intercalation facilitates efficient DNA-targeted covalent binding of phenanthriplatin
AU - Almaqwashi, Ali A.
AU - Zhou, Wen
AU - Naufer, M. Nabuan
AU - Riddell, Imogen A.
AU - Yilmaz, Ömer H.
AU - Lippard, Stephen J.
AU - Williams, Mark C.
PY - 2019/1/30
Y1 - 2019/1/30
N2 - Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly enhanced DNA covalent binding activity compared to its parent complex. To understand the underlying molecular mechanism, we use single molecule studies with optical tweezers to probe the kinetics of DNAphenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extension of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ~10 s, followed by slow and irreversible DNA elongation that reaches equilibrium in ~30 min. In contrast, only reversible fast DNA elongation occurs for its stereoisomer trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding is observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans phenanthriplatin. This study demonstrates that reversible DNA intercalation can be employed to provide a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.
AB - Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly enhanced DNA covalent binding activity compared to its parent complex. To understand the underlying molecular mechanism, we use single molecule studies with optical tweezers to probe the kinetics of DNAphenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extension of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ~10 s, followed by slow and irreversible DNA elongation that reaches equilibrium in ~30 min. In contrast, only reversible fast DNA elongation occurs for its stereoisomer trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding is observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans phenanthriplatin. This study demonstrates that reversible DNA intercalation can be employed to provide a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.
UR - http://www.scopus.com/inward/record.url?scp=85060245754&partnerID=8YFLogxK
U2 - 10.1021/jacs.8b10252
DO - 10.1021/jacs.8b10252
M3 - Article
C2 - 30599508
SN - 0002-7863
VL - 141
SP - 1537
EP - 1545
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 4
ER -