Down-speeding diesel engines with two-stage turbochargers: analysis and control considerations

Daryoush Mirza Hekmati, William Heath, Judith Apsley, James Forbes

Research output: Contribution to journalArticlepeer-review


Diesel engines continue to be used in truck applications, so reducing fuel use and hence CO2 emissions, is a priority. Single-stage turbocharged diesel engines are known to be fuel efficient under steady load at low speeds. However, the engine’s ability to track load transients becomes limited by emission constraints due to the rate of production values for smoke and the resulting higher nitrogen oxides (NOx). Modern air-path solutions including a variable geometry turbine (VGT) and high pressure exhaust gas recirculation (EGR) can be used to improve dynamic response without increasing NOx emissions, but lead to complex interactions that can be difficult to control. This paper develops a two- stage, in-series, air-path configuration, which improves the typical part-load performance at low engine-speeds through adjustments to the turbine expansion ratios. Better EGR rates (for NOx reduction) at low engine speeds can be achieved whilst the engine transient response is maintained. The air-path system is simulated using Ricardo Wave software and analysed for steady-state and transient behaviour in order to identify the relationships, constraints and performance measures for different operating regions that specify the controller requirements.
Original languageEnglish
JournalInternational Journal of Engine Research
Publication statusAccepted/In press - 29 Oct 2020


  • Turbocharger
  • Diesel engine
  • down-speeding
  • control
  • VGT
  • EGR


Dive into the research topics of 'Down-speeding diesel engines with two-stage turbochargers: analysis and control considerations'. Together they form a unique fingerprint.

Cite this