TY - JOUR
T1 - Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism
AU - Pignataro, Giuseppe
AU - Maysami, Samaneh
AU - Studer, Francesca E.
AU - Wilz, Andrew
AU - Simon, Roger P.
AU - Boison, Detlev
PY - 2008/1
Y1 - 2008/1
N2 - The rate of ischemic brain injury varies with the brain region, requiring only hours in striatum but days in hippocampus. Such maturation implies the existence of endogenous neuroprotective mechanisms. Adenosine is an endogenous neuroprotectant regulated by adenosine kinase (ADK). To investigate, whether adenosine might play a role in protecting the hippocampus after focal ischemia, we subjected transgenic mice, which overexpress ADK in hippocampal neurons (Adk-tg mice) to transient middle cerebral artery occlusion (MCAO). Although the hippocampus of wild-type (wt) mice was consistently spared from injury after 60 mins of MCAO, hippocampal injury became evident in Adk-tg mice after only 15 mins of MCAO. To determine, whether downregulation of hippocampal ADK might qualify as candidate mechanism mediating endogenous neuroprotection, we evaluated ADK expression in wt mice after several periods of reperfusion after 15 or 60 mins of MCAO. After 60 mins of MCAO, hippocampal ADK was significantly reduced in both hemispheres after 1, 3, and 24 h of reperfusion. Reduction of ADK-immunoreactivity corresponded to a 2.2-fold increase in hippocampal adenosine at 3 h of reperfusion. Remarkably, a significant reduction of ADK immunoreactivity was also found in the ipsilateral (stroked) hippocampus after 15 mins of MCAO and 3 h of reperfusion. Thus, transient downregulation of hippocampal ADK after stroke might be a protective mechanism during maturation hippocampal cell loss. © 2008 ISCBFM All rights reserved.
AB - The rate of ischemic brain injury varies with the brain region, requiring only hours in striatum but days in hippocampus. Such maturation implies the existence of endogenous neuroprotective mechanisms. Adenosine is an endogenous neuroprotectant regulated by adenosine kinase (ADK). To investigate, whether adenosine might play a role in protecting the hippocampus after focal ischemia, we subjected transgenic mice, which overexpress ADK in hippocampal neurons (Adk-tg mice) to transient middle cerebral artery occlusion (MCAO). Although the hippocampus of wild-type (wt) mice was consistently spared from injury after 60 mins of MCAO, hippocampal injury became evident in Adk-tg mice after only 15 mins of MCAO. To determine, whether downregulation of hippocampal ADK might qualify as candidate mechanism mediating endogenous neuroprotection, we evaluated ADK expression in wt mice after several periods of reperfusion after 15 or 60 mins of MCAO. After 60 mins of MCAO, hippocampal ADK was significantly reduced in both hemispheres after 1, 3, and 24 h of reperfusion. Reduction of ADK-immunoreactivity corresponded to a 2.2-fold increase in hippocampal adenosine at 3 h of reperfusion. Remarkably, a significant reduction of ADK immunoreactivity was also found in the ipsilateral (stroked) hippocampus after 15 mins of MCAO and 3 h of reperfusion. Thus, transient downregulation of hippocampal ADK after stroke might be a protective mechanism during maturation hippocampal cell loss. © 2008 ISCBFM All rights reserved.
KW - Hippocampus
KW - Middle cerebral artery occlusion (MCAO)
KW - Neuroprotection
KW - Preconditioning
KW - Stroke
U2 - 10.1038/sj.jcbfm.9600499
DO - 10.1038/sj.jcbfm.9600499
M3 - Article
SN - 1559-7016
VL - 28
SP - 17
EP - 23
JO - Journal of Cerebral Blood Flow and Metabolism
JF - Journal of Cerebral Blood Flow and Metabolism
IS - 1
ER -