Abstract
A new forecast-based dynamic inventory control approach is discussed in this paper. In this approach, forecasts and forecast uncertainties are assumed to be exogenous data known in advance at each period over a fixed horizon. The control parameters are derived by using a sequential procedure. The merits of this approach as compared to the classical one are presented. We focus on a single-stage and single-item inventory system with non-stationary demand and lead-time uncertainty. A dynamic re-order point control policy is analysed based on the new approach and its parameters are determined for a given target cycle service level (CSL). The performance of this policy is assessed by means of empirical experimentation on a large demand data set from the pharmaceutical industry. The empirical results demonstrate the benefits arising from using such a policy and allow insights to be gained into other pertinent managerial issues.
Original language | English |
---|---|
Pages (from-to) | 2461-2483 |
Number of pages | 22 |
Journal | International Journal of Production Research |
Volume | 47 |
Issue number | 9 |
DOIs | |
Publication status | Published - Jan 2009 |
Keywords
- Empirical analysis
- Forecasting
- Lead-time demand
- Simulation
- Stock control