Abstract
Context. The high star formation rates of luminous infrared galaxies (LIRGs) make them ideal places for core-collapse supernova (CCSN) searches. Massive star formation can often be found in coexistence with an active galactic nucleus (AGN), contributing jointly to the energy source of LIRGs. At radio frequencies, where light is unaffected by dust extinction, it is possible to detect compact components within the innermost LIRG nuclear regions, such as SNe and SN remnants, as well as AGN buried deep in the LIRG nuclei. Aims. Our study of the LIRG IC 883 aims at: (i) investigating the parsec-scale radio structure of the (circum-)nuclear regions of IC 883; (ii) detecting at radio frequencies the two recently reported circumnuclear SNe 2010cu and 2011hi, which were discovered by near-IR (NIR) adaptive optics observations of IC 883; and (iii) further investigating the nature of SN 2011hi at NIR wavelengths. Methods. We used the electronic European very long baseline interferometry (VLBI) Network (e-EVN) at 5 GHz, and the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 6.9 GHz, to observe contemporaneously the LIRG IC 883 at high angular-resolution (from tens to hundreds of milliarcsec) and with high sensitivity (
Original language | English |
---|---|
Article number | A72 |
Journal | Astronomy and Astrophysics |
Volume | 543 |
DOIs | |
Publication status | Published - Jul 2012 |
Keywords
- Galaxies: individual: IC 883
- Galaxies: starburst
- Radiation mechanisms: non-thermal
- Radio lines: stars