Projects per year
Abstract
For titanium alloys, crack initiation as a result of plastic strain accumulation has been shown to govern fatigue life under the high cycle fatigue regime. In this study, the early plastic slip activity and fatigue crack initiation was studied using a cyclic four point bending test at 10 Hz with a load ratio of 0.1, up to 90% of the proof stress. The plastic slip in the high stress area was monitored by interrupting the test and performing optical microscopy. Following fatigue crack initiation, scanning electron microscopy (SEM) combined with electron backscatter diffraction (EBSD) was used to identify the slip and crack initiation mode in a 600 x 600 μm2 area. Using slip trace analysis, it was shown that primary alpha grains offered dominant plastic deformation with basal slip activation. Cracking along basal planes was determined to be the dominant damage mode.
Original language | Undefined |
---|---|
Journal | MATEC Web of Conferences |
DOIs | |
Publication status | Published - 12 Oct 2020 |
Projects
- 1 Finished
-
LightForm: Embedding Materials Engineering in Manufacturing with Light Alloys
Prangnell, P. (PI), Curioni, M. (CoI), Haigh, S. (CoI), Quinta Da Fonseca, J. (CoI), Robson, J. (CoI), Shanthraj, P. (CoI) & Zhou, X. (CoI)
1/10/17 → 18/10/23
Project: Research