EEG phase patterns reflect the selectivity of neural firing

Nikos Logothetis, Benedict Shien Wei Ng, Nikos K. Logothetis, Christoph Kayser

    Research output: Contribution to journalArticlepeer-review


    Oscillations are pervasive in encephalographic signals and supposedly reflect cognitive processes and sensory representations. While the relation between oscillation amplitude (power) and sensory-cognitive variables has been extensively studied, recent work reveals that the dynamic oscillation signature (phase pattern) can carry information about such processes to a greater degree than amplitude. To elucidate the neural correlates of oscillatory phase patterns, we compared the stimulus selectivity of neural firing rates and auditory-driven electroencephalogram (EEG) oscillations. We employed the same naturalistic sound stimuli in 2 experiments, one recording scalp EEGs in humans and one recording intracortical local field potentials (LFPs) and single neurons in macaque auditory cortex. Using stimulus decoding techniques, we show that stimulus selective firing patterns imprint on the phase rather than the amplitude of slow (theta band) oscillations in LFPs and EEG. In particular, we find that stimuli which can be discriminated by firing rates can also be discriminated by phase patterns but not by oscillation amplitude and that stimulus-specific phase patterns also persist in the absence of increases of oscillation power. These findings support a neural basis for stimulus selective and entrained EEG phase patterns and reveal a level of interrelation between encephalographic signals and neural firing beyond simple amplitude covariations in both signals. © The Author 2012. Published by Oxford University Press. All rights reserved.
    Original languageEnglish
    Pages (from-to)389-398
    Number of pages9
    JournalCerebral Cortex
    Issue number2
    Publication statusPublished - Feb 2013


    • auditory cortex
    • entrainment
    • natural sounds
    • oscillations
    • phase coding
    • stimulus discrimination
    • theta band


    Dive into the research topics of 'EEG phase patterns reflect the selectivity of neural firing'. Together they form a unique fingerprint.

    Cite this