Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis

Research output: Contribution to journalArticlepeer-review


Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but are still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development. Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.

Original languageEnglish
Article number2696
JournalScientific Reports
Publication statusPublished - 1 Feb 2024


Dive into the research topics of 'Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis'. Together they form a unique fingerprint.

Cite this