Effect of Coordination Geometry on Magnetic Properties in a Series of Cobalt(II) Complexes and Structural Transformation in Mother Liquor

Subrata Ghosh, Sujit Kamilya, Mayurika Das, Sakshi Mehta, Marie Emmanuelle Boulon, Ivan Nemec, Mathieu Rouzières, Radovan Herchel, Abhishake Mondal*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The three Co(II) complexes [Co(bbp)2][Co(NCS)4]·4DMF (1), [Co(bbp)(NCS)2(DMF)]·2DMF (2), and [Co(bbp)(NCS)2] (3) have been synthesized and characterized by single-crystal X-ray diffraction, magnetic, and various spectroscopic techniques. Complexes 1 and 3 are obtained by the reaction of Co(NCS)2 with 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine (bbp), and complex 1 undergoes a structural transformation to form complex 2. A single-crystal X-ray study revealed that complex 1 is comprised of two Co(II) centers, a cationic octahedral Co(II) unit and an anionic tetrahedral Co(II) unit, while the Co(II) ion is in a distorted-octahedral environment in 2. Moreover, in complex 3, the Co(II) ion is in a distorted-square-pyramidal geometry. The effect of coordination geometry on the magnetic properties was studied by both static and dynamic magnetic measurements. Direct current (dc) magnetic susceptibility measurements showed that all of the Co(II) ions are in high-spin state in these complexes. Alternating current (ac) magnetic susceptibility measurements indicated that complexes 2 and 3 display slow relaxation of magnetization in an external dc magnetic field, while complex 1 displayed no such property. EPR experiments and theoretical calculations were consistent with the above findings.

Original languageEnglish
Pages (from-to)7067-7081
Number of pages15
JournalInorganic Chemistry
Volume59
Issue number10
DOIs
Publication statusPublished - 18 May 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Effect of Coordination Geometry on Magnetic Properties in a Series of Cobalt(II) Complexes and Structural Transformation in Mother Liquor'. Together they form a unique fingerprint.

Cite this