Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin

George Mountouris, Nick Silikas, George Eliades

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Purpose: The aim of the present study was to evaluate the deproteination potential of 5% aqueous NaOCl solution applied by rubbing action on the molecular composition and morphology of smear-layer covered and acid-etched human coronal dentin surfaces. Materials and Methods: Paired specimens (n = 4 x 2 per group) of acid-etched (Group A) and smear-layer covered (Group B) human coronal dentin surfaces were sequentially treated with the NaOCl solution for time intervals ranging from 5 s to 120 s and analyzed by reflectance FTIR microspectroscopy and tapping mode atomic force microscopy. The changes in the mineral (v4 P-O stretching vibrations) to matrix (C = O stretching vibrations of amide I) peak area ratios and in the Ra roughness parameter were used to quantify the effect of treatment. Two-way ANOVA and Dunn's tests were used to assess the differences within each group and between groups (a = 0.05). Results: In both groups, NaOCl treatment reduced organic matrix (amide I, II, III peaks), but did not affect carbonates and phosphates. In group A, the rate of deproteination was slow, and reached a peak value after 120 s. Tubule orifices became visible after 40 s of treatment; after 120 s, excessive porosity was detected, with Ra values presenting no statistically significant difference from group B. In group B after 10 s, the extent of deproteination was enhanced, reaching a plateau between 30 s and 60 s, and attaining a maximum after 120 s. Tubule diameter, intertubular porosity, and Ra were increased; intertubular dentin area was reduced. For both groups after 40 s of treatment, the mineral to matrix ratio recorded was similar to smear-layer-free sectioned dentin. Conclusion: The results of the present study imply that deproteination of mineralized or acid-etched dentin surfaces within a clinically relevant time frame may provide methods for bonding to dentin alternative to conventional technique-sensitive dentin hybridization.
    Original languageEnglish
    Pages (from-to)175-182
    Number of pages7
    JournalJournal of Adhesive Dentistry
    Volume6
    Issue number3
    Publication statusPublished - 2004

    Keywords

    • AFM
    • Dentin
    • Deproteination
    • FTIR
    • Sodium hypochlorite

    Fingerprint

    Dive into the research topics of 'Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin'. Together they form a unique fingerprint.

    Cite this