Abstract
BiFeO3-BaTiO3 (BF-BT) solid solutions have great potential as high-temperature piezoelectric transducers and energy storage dielectrics. However, the effects of donor doping in BF-BT on the local chemical heterogeneity and corresponding control of ferroelectric properties are not well investigated. In this study, it is shown that substitution of Nb5+ for Fe3+ at a concentration of only 0.1 at% in 0.75BF-0.25BT ceramics can induce pronounced core-shell microstructural features, which are not evident for pure BF-BT ceramics or those doped with 0.1 at% Nb5+ for Ti4+. The spatial distribution of Nb, confirmed by Nano-SIMS with exceptional resolution and sensitivity, reveals the role of Nb as an aliovalent solute that inhibits chemical homogenization, stabilizing the formation of Bi-, Fe-enriched core and Ba-, Ti-enriched shell regions at high temperatures, and reducing inter-diffusion during sintering. Electric field-induced domain switching and lattice strain measurements, obtained by in-situ high-energy synchrotron X-ray diffraction, revealed the effects of elastic constraint between the core and shell regions, which degraded the dielectric, ferroelectric, and piezoelectric properties. In contrast, substitution of 0.1 at% Nb on the Ti4+ site gave rise to more homogeneous materials and induced a softening effect with enhanced functional properties. This study provides an advanced investigation into the effects of trace amounts of donor dopant in BF-BT ceramics and offers valuable insights into optimizing doping strategy to control their microstructure and functional properties.
Original language | English |
---|---|
Article number | 120890 |
Journal | Acta Materialia |
Volume | 289 |
Early online date | 3 Mar 2025 |
DOIs | |
Publication status | Published - 1 May 2025 |
Keywords
- BiFeO3-BaTiO3
- core-shell microstructure
- niobium dopant
- synthesis process
- synchrotron XRD