Efficient block preconditioning for a C1 finite element discretisation of the Dirichlet biharmonic problem

Jennifer Pestana, Richard Muddle, Matthias Heil, Francoise Tisseur, Milan Mihajlovic

Research output: Contribution to journalArticlepeer-review

Abstract

We present an efficient block preconditioner for the two-dimensional biharmonic Dirichlet problem discretized by $C^1$ bicubic Hermite finite elements. In this formulation each node in the mesh has four different degrees of freedom (DOFs). Grouping DOFs of the same type together leads to a natural blocking of the Galerkin coefficient matrix. Based on this block structure, we develop two preconditioners: a $2\times 2$ block diagonal (BD) preconditioner and a block bordered diagonal (BBD) preconditioner. We prove mesh-independent bounds for the spectra of the BD-preconditioned Galerkin matrix under certain conditions. The eigenvalue analysis is based on the fact that the proposed preconditioner, like the coefficient matrix itself, is symmetric positive definite (SPD) and assembled from element matrices. We demonstrate the effectiveness of an inexact version of the BBD preconditioner, which exhibits near-optimal scaling in terms of computational cost with respect to the discrete problem size. Finally, we study robustness of this preconditioner with respect to element stretching, domain distortion, and nonconvex domains.
Original languageEnglish
Pages (from-to)A325–A345
JournalS I A M Journal on Scientific Computing
Volume38
Issue number1
Early online date28 Jan 2016
DOIs
Publication statusPublished - 28 Jan 2016

Fingerprint

Dive into the research topics of 'Efficient block preconditioning for a C1 finite element discretisation of the Dirichlet biharmonic problem'. Together they form a unique fingerprint.

Cite this