Efficient Inference for Sparse Latent Variable Models of Transcriptional Regulation

Zhenwen Dai, Mudassar Iqbal, Neil D Lawrence, Magnus Rattray

Research output: Contribution to journalArticlepeer-review


Regulation of gene expression in prokaryotes involves complex co-regulatory mechanisms involving large numbers of transcriptional regulatory proteins and their target genes. Uncovering these genome-scale interactions constitutes a major bottleneck in systems biology. Sparse latent factor models, assuming activity of transcription factors (TFs) as unobserved, provide a biologically interpretable modelling framework, integrating gene expression and genome-wide binding data, but at the same time pose a hard computational inference problem. Existing probabilistic inference methods for such models rely on subjective filtering and suffer from scalability issues, thus are not well-suited for realistic genome-scale applications.
Results: We present a fast Bayesian sparse factor model, which takes input gene expression and binding sites data, either from ChIP-seq experiments or motif predictions, and outputs active TF-gene links as well as latent TF activities. Our method employs an efficient variational Bayes scheme for model inference enabling its application to large datasets which was not feasible with existing MCMC-based inference methods for such models. We validate our method on synthetic data against a similar model in the literature, employing MCMC for inference, and obtain comparable results with a small fraction of the computational time. We also apply our method to large-scale data from Mycobacterium tuberculosis involving ChIP-seq data on 113 TFs and matched gene expression data for 3863 putative target genes. We evaluate our predictions using an independent transcriptomics experiment involving over-expression of TFs.
Original languageEnglish
Pages (from-to)3776–3783
Issue number23
Early online date26 Aug 2017
Publication statusPublished - 1 Dec 2017


Dive into the research topics of 'Efficient Inference for Sparse Latent Variable Models of Transcriptional Regulation'. Together they form a unique fingerprint.

Cite this