Efficient NADPH-dependent dehalogenation afforded by a self-sufficient reductive dehalogenase

Karl Fisher, Tom Halliwell, Karl Payne, Gabriel Ragala, Sam Hay, Stephen Rigby, David Leys

Research output: Contribution to journalArticlepeer-review


Reductive dehalogenases are corrinoid and iron−sulfur cluster containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen-tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in E. coli. Combining the use of maltose binding protein as a solubility enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. EPR spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.
Original languageEnglish
Article number 105086
JournalJournal of Biological Chemistry
Issue number9
Publication statusPublished - 1 Sept 2023


  • Reductive dehalogenase
  • Bioremediation
  • Cobalamin
  • B12
  • Fe-S
  • clusters
  • EPR


Dive into the research topics of 'Efficient NADPH-dependent dehalogenation afforded by a self-sufficient reductive dehalogenase'. Together they form a unique fingerprint.

Cite this