Electrically controlled water permeation through graphene oxide membranes

Kai-Ge Zhou, Vasu Siddeswara Kalangi, Christie Cherian, M. Neek-Amal, J. C. Zhang, H. Ghorbanfekr-Kalashami, Kun Huang, Owen Marshall, Vasyl Kravets, Jijo Abraham, Yang Su, Alexander Grigorenko, A Pratt, Andre Geim, F Peeters, Konstantin Novoselov, Rahul Raveendran Nair

    Research output: Contribution to journalArticlepeer-review

    414 Downloads (Pure)

    Abstract

    Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies1,2,3,4,5,6,7. Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength3,8. Electrical control over water transport is an attractive alternative; however, theory and simulations9,10,11,12,13,14 have often yielded conflicting results, from freezing of water molecules to melting of ice14,15,16 under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes17,18,19,20,21. Such membranes have previously been shown to exhibit ultrafast permeation of water17,22 and molecular sieving properties18,21, with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.
    Original languageEnglish
    Pages (from-to)236-240
    JournalNature
    Volume559
    Early online date11 Jul 2018
    DOIs
    Publication statusPublished - 2018

    Research Beacons, Institutes and Platforms

    • National Graphene Institute

    Fingerprint

    Dive into the research topics of 'Electrically controlled water permeation through graphene oxide membranes'. Together they form a unique fingerprint.

    Cite this