Electronic, structural, and reactive properties of ultrathin aluminum oxide films on Pt(111)

Karen Wilson, Adam F. Lee, Christopher Hardacre, Richard M. Lambert*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline γ-alumina. Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted γ-alumina on the Pt(111) surface. Oxidation of a p(2 × 2) Pt3Al surface alloy occurs only at >800 K, resulting in Al extraction. These alumina films on Pt(111) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.

    Original languageEnglish
    Pages (from-to)1736-1744
    Number of pages9
    JournalJournal of Physical Chemistry B
    Volume102
    Issue number10
    Publication statusPublished - 5 Mar 1998

    Fingerprint

    Dive into the research topics of 'Electronic, structural, and reactive properties of ultrathin aluminum oxide films on Pt(111)'. Together they form a unique fingerprint.

    Cite this