Abstract
Original language | English |
---|---|
Pages (from-to) | 3263-3273 |
Number of pages | 11 |
Journal | Analytical and bioanalytical chemistry |
Volume | 402 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- Complementary techniques
- NanoSIMS
- Secondary ion mass spectrometry
- Trace elements
- X-ray spectroscopy
- Data sets
- Elemental distribution
- Future trends
- High resolution
- Localisation
- Low concentrations
- Nano scale
- Particle induced X-ray emission
- Periodic table
- Plant material
- Plant metabolism
- Sample preparation
- Secondary ions
- Stable isotopes
- Subcellular scale
- Synchrotron techniques
- Toxic elements
- Tracer experiment
- X ray fluorescence
- Biological materials
- Biomimetics
- Electron probe microanalysis
- Hydrogen
- Inductively coupled plasma mass spectrometry
- Isotopes
- Optical microscopy
- Transmission electron microscopy
- Uranium
- X ray absorption spectroscopy
- trace element
- chemistry
- evaluation
- instrumentation
- mass spectrometry
- metabolism
- methodology
- nanotechnology
- plant
- review
- transport at the cellular level
- Biological Transport
- Plants
Fingerprint
Dive into the research topics of 'Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Analytical and bioanalytical chemistry, Vol. 402, No. 10, 2012, p. 3263-3273.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants
AU - Moore, K L
AU - Lombi, E
AU - Zhao, F J
AU - Grovenor, C R M
N1 - Cited By :29 Export Date: 26 January 2015 CODEN: ABCNB Correspondence Address: Moore, K.L.; Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom; email: [email protected] Chemicals/CAS: Trace Elements References: Taiz, L., Zeiger, E., (2002) Plant Physiology, , 3 Sinauer Associates Sunderland; Raven, P.H., Evert, R.F., Eichhorn, S.E., (1999) Biology of Plants, , 6 Freeman New York; Burns, M.S., (1982) J Microsc, 127 (3), pp. 237-258. , 10.1111/j.1365-2818.1982.tb00419.x 1:CAS:528:DyaL38XlvFGhsL4%3D; Hoppe, P., NanoSIMS: A new tool in cosmochemistry (2006) Applied Surface Science, 252 (19), pp. 7102-7106. , DOI 10.1016/j.apsusc.2006.02.129, PII S0169433206004302; Messenger, S., Keller, L.P., Stadermann, F.J., Walker, R.M., Zinner, E., Samples of stars beyond the solar system: Silicate grains in interplanetary dust (2003) Science, 300 (5616), pp. 105-108. , DOI 10.1126/science.1080576; Floss, C., Stadermann, F.J., Bradley, J.P., Dai, Z.R., Bajt, S., Graham, G., Lea, A.S., (2006) Geochim Cosmochim Acta, 70 (9), pp. 2371-2399. , 10.1016/j.gca.2006.01.023 1:CAS:528:DC%2BD28Xjslyhtb4%3D; Stern, R.A., Fletcher, I.R., Rasmussen, B., McNaughton, N.J., Griffin, B.J., (2005) Int J Mass Spectrom, 244 (23), pp. 125-134. , 1:CAS:528:DC%2BD2MXms1yjurg%3D; Wacey, D., Saunders, M., Brasier, M.D., Kilburn, M.R., (2011) Earth Planet Sci Lett, 301 (12), pp. 393-402. , 10.1016/j.epsl.2010.11.025 1:CAS:528:DC%2BC3cXhs1agurnN; Barker, S.L.L., Hickey, K.A., Cline, J.S., Dipple, G.M., Kilburn, M.R., Vaughan, J.R., Longo, A.A., (2009) Econ Geol, 104 (7), pp. 897-904. , 10.2113/gsecongeo.104.7.897 1:CAS:528:DC%2BD1MXhs1aqsb3I; Herrmann, A.M., Clode, P.L., Fletcher, I.R., Nunan, N., Stockdale, E.A., O'Donnell, A.G., Murphy, D.V., A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry (2007) Rapid Communications in Mass Spectrometry, 21 (1), pp. 29-34. , DOI 10.1002/rcm.2811; Myrold, D.D., Pett-Ridge, J., Bottomley, P.J., (2011) Methods Enzymol, 496, pp. 91-114. , 10.1016/B978-0-12-386489-5.00004-X; Herrmann, A.M., Ritz, K., Nunan, N., Clode, P.L., Pett-Ridge, J., Kilburn, M.R., Murphy, D.V., Stockdale, E.A., Nano-scale secondary ion mass spectrometry - A new analytical tool in biogeochemistry and soil ecology: A review article (2007) Soil Biology and Biochemistry, 39 (8), pp. 1835-1850. , DOI 10.1016/j.soilbio.2007.03.011, PII S003807170700106X; Heister K, H., (2011) J Soils Sediments, , (in press); Lau, K.H., Christlieb, M., Schröder, M., Sheldon, H., Harris, A.L., Grovenor, C.R.M., (2010) J Microsc, 240 (1), pp. 21-31. , 10.1111/j.1365-2818.2010.03380.x 1:STN:280:DC%2BC3cbkvFCjsg%3D%3D; Guerquin-Kern, J.-L., Hillion, F., Madelmont, J.-C., Labarre, P., Papon, J., Croisy, A., Ultra-structural cell distribution of the melanoma marker iodobenzamide: Improved potentially of SIMS imaging in life sciences (2004) BioMedical Engineering Online, 3, p. 10. , http://www.biomedical-engineering-online.com/content/3/1/10, DOI 10.1186/1475-925X-3-10; Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., Horreard, F., Kuypers, M.M.M., (2008) Proc Natl Acad Sci USA, 105 (46), pp. 17861-17866. , 10.1073/pnas.0809329105 1:CAS:528:DC%2BD1cXhsVCrt7zN; Lechene, C., Hillion, F., McMahon, G., Benson, D., Kleinfeld, A., Kampf, J.P., Distel, D., Slodzian, G., (2006) J Biol, 5 (6), p. 20. , 10.1186/jbiol42; Li, T., Wu, T.-D., Mazeas, L., Toffin, L., Guerquin-Kern, J.-L., Leblon, G., Bouchez, T., Simultaneous analysis of microbial identity and function using NanoSIMS (2008) Environmental Microbiology, 10 (3), pp. 580-588. , DOI 10.1111/j.1462-2920.2007.01478.x; Ploug, H., Musat, N., Adam, B., Moraru, C.L., Lavik, G., Vagner, T., Bergman, B., Kuypers, M.M.M., (2010) ISME J, 4 (9), pp. 1215-1223. , 10.1038/ismej.2010.53 1:CAS:528:DC%2BC3cXhtVKgsr7N; Eybe, T., Audinot, J.N., Bohn, T., Guignard, C., Migeon, H.N., Hoffmann, L., (2008) J Appl Microbiol, 105 (5), pp. 1502-1510. , 10.1111/j.1365-2672.2008.03870.x 1:CAS:528:DC%2BD1cXhsVyqs7bL; Quintana, C., Wu, T.-D., Delatour, B., Dhenain, M., Guerquin-Kern, J.L., Croisy, A., Morphological and chemical studies of pathological human and mice brain at the subcellular level: Correlation between light, electron, and NanoSIMS microscopies (2007) Microscopy Research and Technique, 70 (4), pp. 281-295. , DOI 10.1002/jemt.20403; Marsh, J.M., Smart, K.E., Kilburn, M., Schroeder, M., Martin, B.G.H., Hawes, C., Grovenor, C.R.M., (2009) J Cosmet Sci, 60 (3), pp. 337-345; Audinot, J.N., Schneider, S., Yegles, M., Hallegot, P., Wennig, R., Migeon, H.N., (2004) Appl Surf Sci, 231-232, pp. 490-496. , 10.1016/j.apsusc.2004.03.192; Hallegot, P., Peteranderl, R., Lechene, C., In-Situ Imaging Mass Spectrometry Analysis of Melanin Granules in the Human Hair Shaft (2004) Journal of Investigative Dermatology, 122 (2), pp. 381-386. , DOI 10.1046/j.0022-202X.2004.22217.x; Kraft, M.L., Weber, P.K., Longo, M.L., Hutcheon, I.D., Boxer, S.G., Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry (2006) Science, 313 (5795), pp. 1948-1951. , DOI 10.1126/science.1130279; Anderton, C.R., Lou, K.Y., Weber, P.K., Hutcheon, I.D., Kraft, M.L., (2011) Biochim Biophys Acta Biomembranes, 1808 (1), pp. 307-315. , 10.1016/j.bbamem.2010.09.016 1:CAS:528:DC%2BC3cXhsFart7bN; Moore, K.L., Schroder, M., Lombi, E., Zhao, F.J., McGrath, S.P., Hawkesford, M.J., Shewry, P.R., Grovenor, C.R.M., (2010) New Phytol, 185 (2), pp. 434-445. , 10.1111/j.1469-8137.2009.03071.x 1:CAS:528:DC%2BC3cXhsVyrsL8%3D; Moore, K.L., Schroder, M., Wu, Z., Martin, B., Hawes, C., McGrath, S.P., Hawkesford, M.J., Grovenor, C.R.M., (2011) Plant Physiol, 156 (2), pp. 913-924. , 10.1104/pp.111.173088 1:CAS:528:DC%2BC3MXnvFWrt70%3D; Smart, K.E., Smith, J.A.C., Kilburn, M.R., Martin, B.G.H., Hawes, C., Grovenor, C.R.M., (2010) Plant J, 63 (5), pp. 870-879. , 10.1111/j.1365-313X.2010.04279.x 1:CAS:528:DC%2BC3cXhtF2qt7fP; Grignon, N., Vidmar, J.J., Hillion, F., Jaillard, B., (1999) Proceedings of the 12th International Conference on Secondary Ion Mass Spectrometry, , Brussels, Belgium; Misson, J., Henner, P., Morello, M., Floriani, M., Wu, T.D., Guerquin-Kern, J.L., Fevrier, L., (2009) Environ Exp Bot, 67 (2), pp. 353-362. , 10.1016/j.envexpbot.2009.09.001 1:CAS:528:DC%2BD1MXht1CrsbfE; Vickerman, J.C., Gilmore, I.S., (2009) Surface Analysis: The Principal Techniques, , 2 Wiley Chichester 10.1002/9780470721582; Wilson, R.G., Stevie, F.A., Magee, C.W., (1989) Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, , Wiley New York; Benninghoven, A., Reudenauer, F.G., Werner, H.W., (1987) Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends. Chemical Analysis, , Wiley New York; Benninghoven, A., (1971) Surf Sci, 28 (2), pp. 541-562. , 10.1016/0039-6028(71)90061-6 1:CAS:528:DyaE38XmtlOisQ%3D%3D; Benninghoven, A., (1969) Phys Status Solidi, 34 (2), p. 169. , 10.1002/pssb.19690340267; Sodhi, R.N.S., Time-of-flight secondary ion mass spectrometry (TOF-SIMS): - Versatility in chemical and imaging surface analysis (2004) Analyst, 129 (6), pp. 483-487. , DOI 10.1039/b402607c; Chandra, S., Smith, D.R., Morrison, G.H., (2000) Anal Chem, 72 (3), pp. 104a-114a. , 10.1021/ac002716i 1:CAS:528:DC%2BD3cXotlCqtg%3D%3D; McMahon, G., Glassner, B.J., Lechene, C.P., Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)-Nanoautography with stable isotope tracers (2006) Applied Surface Science, 252 (19), pp. 6895-6906. , DOI 10.1016/j.apsusc.2006.02.170, PII S0169433206005010; Breitenstein, D., Rommel, C.E., Mollers, R., Wegener, J., Hagenhoff, B., The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry (2007) Angewandte Chemie - International Edition, 46 (28), pp. 5332-5335. , DOI 10.1002/anie.200604468; Slodzian, G., Daigne, B., Girard, F., Boust, F., Hillion, F., (1992) Biol Cell, 74 (1), pp. 43-50. , 10.1016/0248-4900(92)90007-N 1:CAS:528:DyaK38XksVeltb8%3D; Brunelle, A., Laprevote, O., Lipid imaging with cluster time-of-flight secondary ion mass spectrometry (2009) Analytical and Bioanalytical Chemistry, 393 (1), pp. 31-35. , DOI 10.1007/s00216-008-2367-3; Lazof, D., Linton, R.W., Volk, R.J., Rufty, T.W., (1992) Biol Cell, 74 (1), pp. 127-134. , 10.1016/0248-4900(92)90018-V 1:CAS:528:DyaK38XkvVKisLY%3D; Weiss, D.J., Mason, T.F.D., Zhao, F.J., Kirk, G.J.D., Coles, B.J., Horstwood, M.S.A., Isotopic discrimination of zinc in higher plants (2005) New Phytologist, 165 (3), pp. 703-710. , DOI 10.1111/j.1469-8137.2004.01307.x; Feeney, K.A., Heard, P.J., Zhao, F.J., Shewry, P.R., Determination of the distribution of sulphur in wheat starchy endosperm cells using secondary ion mass spectroscopy (SIMS) combined with isotope enhancement (2003) Journal of Cereal Science, 37 (3), pp. 311-318. , DOI 10.1006/jcrs.2002.0511; Metzner, R., Thorpe, M.R., Breuer, U., Blumler, P., Schurr, U., Schneider, H.U., Schroeder, W.H., (2010) Plant Cell Environ, 33 (8), pp. 1393-1407. , 1:CAS:528:DC%2BC3cXhtVGks7nM; Grignon, N., (2007) Electron Microscopy, Methods and Protocols. Methods in Molecular Biology, Vol 369, pp. 569-591. , J. Kuo (eds). Humana Totowa; Grignon, N., Halpern, S., Gojon, A., Fragu, P., (1992) Biol Cell, 74 (1), pp. 143-146. , 10.1016/0248-4900(92)90020-2 1:CAS:528:DyaK38XitlWjs74%3D; Clode, P.L., Kilburn, M.R., Jones, D.L., Stockdale, E.A., Cliff, J.B., Herrmann, A.M., Murphy, D.V., (2009) Plant Physiol, 151 (4), pp. 1751-1757. , 10.1104/pp.109.141499 1:CAS:528:DC%2BD1MXhsFOgtr3J; Metzner, R., Schneider, H.U., Breuer, U., Schroeder, W.H., Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy (2008) Plant Physiology, 147 (4), pp. 1774-1787. , http://www.plantphysiol.org/cgi/reprint/147/4/1774, DOI 10.1104/pp.107.109215; Roy, S., Gillen, G., Conway, W.S., Watada, A.E., Wergin, W.P., (1995) Protoplasma, 189 (34), pp. 163-172. , 10.1007/BF01280170 1:CAS:528:DyaK28Xhs1yhtLo%3D; Vickerman, J.C.E., Brown, A.E., Reed, N.M.E., (1989) Secondary Ion Mass Spectrometry Principles and Applications, , Clarendon Oxford; Ramseyer, G.O., Morrison, G.H., (1983) Anal Chem, 55 (12), pp. 1963-1970. , 10.1021/ac00262a030 1:CAS:528:DyaL3sXltFyksr0%3D; Derue, C., Gibouin, D., Lefebvre, F., Studer, D., Thellier, M., Ripoll, C., (2006) Anal Chem, 78 (8), pp. 2471-2477. , 10.1021/ac051518u 1:CAS:528:DC%2BD28Xit1OktLc%3D; Wilson, R.G., (1995) Int J Mass Spectrom Ion Process, 143, pp. 43-49. , 10.1016/0168-1176(94)04136-U 1:CAS:528:DyaK2MXms1Cnt78%3D; Brenna, J.T., Morrison, G.H., (1986) Anal Chem, 58 (8), pp. 1675-1680. , 10.1021/ac00121a017 1:CAS:528:DyaL28XktVaqs7s%3D; Levi-Setti, R.R., (1988) Annu Rev Biophys Biophys Chem, 17, pp. 325-347. , 10.1146/annurev.bb.17.060188.001545 1:CAS:528:DyaL1cXltVOgtrs%3D; Liebl, H., Ion probe microanalysis (1975) J Phys e Sci Instrum, 8 (10), pp. 797-808. , 10.1088/0022-3735/8/10/001 1:CAS:528:DyaE28XhtFOhtQ%3D%3D; Lombi, E., Scheckel, K.G., Kempson, I.M., (2011) Environ Exp Bot, 72 (1), pp. 3-17. , 10.1016/j.envexpbot.2010.04.005 1:CAS:528:DC%2BC3MXltFyktbc%3D; Grovenor, C.R.M., Smart, K.E., Kilburn, M.R., Shore, B., Dilworth, J.R., Martin, B., Hawes, C., Rickaby, R.E.M., Specimen preparation for NanoSIMS analysis of biological materials (2006) Applied Surface Science, 252 (19), pp. 6917-6924. , DOI 10.1016/j.apsusc.2006.02.180, PII S0169433206005241; Lozano-Perez, S., Yamada, T., Terachi, T., Schroder, M., English, C.A., Smith, G.D.W., Grovenor, C.R.M., Eyre, B.L., (2009) Acta Mater, 57 (18), pp. 5361-5381. , 10.1016/j.actamat.2009.07.040 1:CAS:528:DC%2BD1MXhtFOktrjE; McDonald, K.L., (2009) J Microsc, 235 (3), pp. 273-281. , 10.1111/j.1365-2818.2009.03218.x 1:STN:280:DC%2BD1Mnis1WgsQ%3D%3D; Behrens, S., Losekann, T., Pett-Ridge, J., Weber, P.K., Ng, W.-O., Stevenson, B.S., Hutcheon, I.D., Spormann, A.M., Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS (2008) Applied and Environmental Microbiology, 74 (10), pp. 3143-3150. , DOI 10.1128/AEM.00191-08; Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M., An efflux transporter of silicon in rice (2007) Nature, 448 (7150), pp. 209-212. , DOI 10.1038/nature05964, PII NATURE05964; Lombi, E., Susini, J., (2009) Plant Soil, 320 (12), pp. 1-35. , 10.1007/s11104-008-9876-x 1:CAS:528:DC%2BD1MXmvFGjtLo%3D; Lombi, E., De Jonge, M.D., Donner, E., Ryan, C.G., Paterson, D., (2011) Anal Bioanal Chem, 400 (6), pp. 1637-1644. , 10.1007/s00216-011-4829-2 1:CAS:528:DC%2BC3MXjtVOns7o%3D; Carey, A.M., Scheckel, K.G., Lombi, E., Newville, M., Choi, Y., Norton, G.J., Charnock, J.M., Meharg, A.A., (2010) Plant Physiol, 152 (1), pp. 309-319. , 10.1104/pp.109.146126 1:CAS:528:DC%2BC3cXmsF2lsr4%3D; Zhao, F.J., McGrath, S.P., Meharg, A.A., (2010) Annu Rev Plant Biol, 61, pp. 535-559. , 10.1146/annurev-arplant-042809-112152 1:CAS:528:DC%2BC3cXnslSjsb0%3D; Meharg, A.A., Lombi, E., Williams, P.N., Scheckel, K.G., Feldmann, J., Raab, A., Zhu, Y., Islam, R., Speciation and localization of arsenic in white and brown rice grains (2008) Environmental Science and Technology, 42 (4), pp. 1051-1057. , DOI 10.1021/es702212p; Lombi, E., Scheckel, K.G., Pallon, J., Carey, A.M., Zhu, Y.G., Meharg, A.A., (2009) New Phytol, 184 (1), pp. 193-201. , 10.1111/j.1469-8137.2009.02912.x 1:CAS:528:DC%2BD1MXht1Kitb7E; Lombi, E., De Jonge, M.D., Donner, E., Ryan, C.G., Paterson, D., (2011) Anal Bioanal Chem, 400 (6), pp. 1637-1644; Lombi, E., Smith, E., Hansen, T.H., Paterson, D., De Jonge, M.D., Howard, D.L., Persson, D.P., Schjoerring, J.K., (2011) J Exp Bot, 62 (1), pp. 273-282. , 10.1093/jxb/erq270 1:CAS:528:DC%2BC3cXhsFamurfO; Ryan, C.G., Siddons, D.P., Kirkham, R., Dunn, P.A., Kuczewski, A., Moorhead, G., De Geronimo, G., Cleverley, J., (2010) X-Ray Opt Microanal Proc, 1221, pp. 9-17. , 1:CAS:528:DC%2BC3cXkvFeju7g%3D; Carey, A.M., Norton, G.J., Deacon, C., Scheckel, K.G., Lombi, E., Punshon, T., Guerinot, M.L., Meharg, A.A., (2011) New Phytol, , (In press); Hayat, M.A., (2000) Principles and Techniques of Electron Microscopy: Biological Applications, , 4 Cambridge University Press Cambridge; Mokgalaka, N., Gardea-Torresdey, J.L., Laser ablation inductively coupled plasma mass spectrometry: Principles and applications (2006) Applied Spectroscopy Reviews, 41 (2), pp. 131-150. , DOI 10.1080/05704920500510703, PII W4640545843252; Wu, B., Zoriy, M., Chen, Y.X., Becker, J.S., (2009) Talanta, 78 (1), pp. 132-137. , 10.1016/j.talanta.2008.10.061 1:CAS:528:DC%2BD1MXhtF2gu7s%3D; Prohaska, T., Stadlbauer, C., Wimmer, R., Stingeder, G., Latkoczy, C., Hoffmann, E., Stephanowitz, H., Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS (1998) Science of the Total Environment, 219 (1), pp. 29-39. , DOI 10.1016/S0048-9697(98)00224-1, PII S0048969798002241; Robison, W.L., (1973) Microprobe Analysis, pp. 271-321. , C.A. Andersen (eds). Wiley New York; Goodhew, P.J., Humphreys, F.J., Beanland, R., (2000) Electron Microscopy and Analysis, , 3 Taylor & Francis London; Loretto, M.H., (1984) Electron Beam Analysis of Materials, , Chapman and Hall London 10.1007/978-94-009-5540-0; Smart, K.E., Kilburn, M.R., Salter, C.J., Smith, J.A.C., Grovenor, C.R.M., (2007) Int J Mass Spectrom, 260 (23), pp. 107-114. , 1:CAS:528:DC%2BD2sXitFSjtQ%3D%3D; Kramer, U., Grime, G.W., Smith, J.A.C., Hawes, C.R., Baker, A.J.M., (1997) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, 130 (14), pp. 346-350. , 10.1016/S0168-583X(97)00368-6; Johansson, S.A.E., Johansson, T.B., (1976) Nucl Instrum Methods, 137 (3), pp. 473-516. , 10.1016/0029-554X(76)90470-5 1:CAS:528:DyaE2sXhtFCntw%3D%3D; Ma, J.F., Yamaji, N., Functions and transport of silicon in plants (2008) Cell Mol Life Sci, 65 (19), pp. 3049-3057. , 10.1007/s00018-008-7580-x 1:CAS:528:DC%2BD1cXhtFOjtrjM
PY - 2012
Y1 - 2012
N2 - The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed. © 2011 Springer-Verlag.
AB - The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed. © 2011 Springer-Verlag.
KW - Complementary techniques
KW - NanoSIMS
KW - Secondary ion mass spectrometry
KW - Trace elements
KW - X-ray spectroscopy
KW - Data sets
KW - Elemental distribution
KW - Future trends
KW - High resolution
KW - Localisation
KW - Low concentrations
KW - Nano scale
KW - Particle induced X-ray emission
KW - Periodic table
KW - Plant material
KW - Plant metabolism
KW - Sample preparation
KW - Secondary ions
KW - Stable isotopes
KW - Subcellular scale
KW - Synchrotron techniques
KW - Toxic elements
KW - Tracer experiment
KW - X ray fluorescence
KW - Biological materials
KW - Biomimetics
KW - Electron probe microanalysis
KW - Hydrogen
KW - Inductively coupled plasma mass spectrometry
KW - Isotopes
KW - Optical microscopy
KW - Transmission electron microscopy
KW - Uranium
KW - X ray absorption spectroscopy
KW - trace element
KW - chemistry
KW - evaluation
KW - instrumentation
KW - mass spectrometry
KW - metabolism
KW - methodology
KW - nanotechnology
KW - plant
KW - review
KW - transport at the cellular level
KW - Biological Transport
KW - Plants
U2 - 10.1007/s00216-011-5484-3
DO - 10.1007/s00216-011-5484-3
M3 - Article
SN - 1618-2642
VL - 402
SP - 3263
EP - 3273
JO - Analytical and bioanalytical chemistry
JF - Analytical and bioanalytical chemistry
IS - 10
ER -