TY - JOUR
T1 - Emissions of volatile organic compounds from crude oil processing - global emission inventory and environmental release
AU - Rajabi, Hamid
AU - Hadi Mosleh, Mojgan
AU - Mandal, Parthasarathi
AU - Lea-Langton, Amanda
AU - Sedighi, Majid
PY - 2020
Y1 - 2020
N2 - Airborne Volatile organic compounds (VOCs) are known to have strong and adverse impacts on human health and the environment by contributing to the formation of tropospheric ozone. VOCs can escape during various stages of crude oil processing, from extraction to refinery, hence the crude oil industry is recognised as one of the major sources of VOC release into the environment. In the last few decades, volatile emissions from crude oil have been investigated either directly by means of laboratory and field-based analyses, or indirectly via emission inventories (EIs) which have been used to develop regulatory and controlling measures in petroleum industry. There is a vast amount of scattered data in the literature for both regional emissions from crude oil processing and scientific measurements of VOC releases. This paper aims to provide a critical analysis on the overall scale of global emissions of VOCs from all stages of oil processing based on data reported in the literature. The volatile compounds, identified via EIs of the crude oil industry or through direct emissions from oil mass, are collected and analysed to present a global-scale evaluation of type, average concentration and detection frequency of the most prevalent VOCs. We provide a critical analysis on the total averages of VOCs and key evidences which highlights the necessity of implementing control measures to regulate crude oil volatile emissions (CVEs) in primary steps of extraction-to-refinery pathways of crude oil processing. We have identified knowledge gaps in this field which are of importance to control the release of VOCs from crude oil, independent of oil type, location, operating conditions and metrological parameters.
AB - Airborne Volatile organic compounds (VOCs) are known to have strong and adverse impacts on human health and the environment by contributing to the formation of tropospheric ozone. VOCs can escape during various stages of crude oil processing, from extraction to refinery, hence the crude oil industry is recognised as one of the major sources of VOC release into the environment. In the last few decades, volatile emissions from crude oil have been investigated either directly by means of laboratory and field-based analyses, or indirectly via emission inventories (EIs) which have been used to develop regulatory and controlling measures in petroleum industry. There is a vast amount of scattered data in the literature for both regional emissions from crude oil processing and scientific measurements of VOC releases. This paper aims to provide a critical analysis on the overall scale of global emissions of VOCs from all stages of oil processing based on data reported in the literature. The volatile compounds, identified via EIs of the crude oil industry or through direct emissions from oil mass, are collected and analysed to present a global-scale evaluation of type, average concentration and detection frequency of the most prevalent VOCs. We provide a critical analysis on the total averages of VOCs and key evidences which highlights the necessity of implementing control measures to regulate crude oil volatile emissions (CVEs) in primary steps of extraction-to-refinery pathways of crude oil processing. We have identified knowledge gaps in this field which are of importance to control the release of VOCs from crude oil, independent of oil type, location, operating conditions and metrological parameters.
U2 - 10.1016/j.scitotenv.2020.138654
DO - 10.1016/j.scitotenv.2020.138654
M3 - Review article
SN - 0048-9697
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -