Enhanced thermopower in ZnO two-dimensional electron gas

Sunao Shimizu, Mohammad Saeed Bahramy, Takahiko Iizuka, Shimpei Ono, Kazumoto Miwa, Yoshinori Tokura, Yoshihiro Iwasa

Research output: Contribution to journalArticlepeer-review

Abstract

Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to ∼ 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities.
Original languageEnglish
JournalProceedings of the National Academy of Sciences of the United States of America
Early online date24 May 2016
DOIs
Publication statusPublished - 7 Jun 2016

Fingerprint

Dive into the research topics of 'Enhanced thermopower in ZnO two-dimensional electron gas'. Together they form a unique fingerprint.

Cite this