EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production

Marie Arnaud (Lead), Andy Baird, Paul Morris, Angela Harris, Jonny Huck

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Fine root production is one of the least well understood components of the carbon cycle in terrestrial ecosystems. Minirhizotrons allow accurate and non-destructive sampling of fine root production. Small and large scale studies across a range of ecosystems are needed to have baseline data on fine root production and further assess the impact of global change upon it; however, the expense and the low adaptability of minirhizotrons prevent such data collection, in worldwide distributed sampling schemes, in low-income countries and in some ecosystems (e.g. tropical forested wetlands).
Results: We present EnRoot, a narrow minirhizotron of 25 mm diameter, that is partially 3D printable. EnRoot is inexpensive (€150), easy to construct (no prior knowledge required) and adapted to a range of ecosystems including tropical forested wetlands (e.g. mangroves, peatlands). We tested EnRoot's accuracy and precision for measuring fine root length and diameter, and it yielded Lin’s concordance correlation coefficient values of 0.95 for root diameter and 0.92 for length. As a proof of concept, we tested EnRoot in a mesocosm study, and in the field in a tropical mangrove. EnRoot proved its capacity to capture the development of roots of a legume (Medicago sativa) and a mangrove species (seedlings of Rhizophora mangle) in laboratory mesocosms. EnRoot's field installation was possible in the root-dense tropical mangrove because its narrow diameter allowed it to be installed between larger roots and because it is fully waterproof. EnRoot compares favourably with commercial minirhizotrons, and can image roots as small as 56 µm.
Conclusion: EnRoot removes barriers to the extensive use of minirhizotrons by being low-cost, easy to construct and adapted to a wide range of ecosystem. It opens the doors to worldwide distributed minirhizotron studies across an extended range of ecosystems with the potential to fill knowledge gaps surrounding fine root production.
Original languageEnglish
JournalPlant Methods
DOIs
Publication statusPublished - 28 Aug 2019

Keywords

  • Minirhizotron
  • Root production
  • Belowground carbon
  • Fine roots
  • 3D minirhizotron
  • Root monitoring
  • Belowground biomass
  • Carbon sequestration
  • Root dynamics

Fingerprint

Dive into the research topics of 'EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production'. Together they form a unique fingerprint.

Cite this