Abstract
Hyperspectral imaging is a spectroscopic imaging technique that can cover a broad range of electromagnetic wavelengths and subdivide those into spectral bands. As a consequence, it may distinguish specific features more effectively than conventional colour cameras. This technology has been increasingly used in agriculture for various applications such as crop leaf area index, plant classification and disease monitoring. However, the abundance of information in hyperspectral imagery may cause high dimensionality problem, leading to computational complexity and storage issues. Furthermore, data availability is another major issue. In agriculture application, typically, it is difficult to collect equal number of samples as some classes or diseases are rare while others are abundant and easy to collect. This may give rise to an imbalanced data problem that can severely reduce machine learning performance and introduce bias in performance measurement. In this paper, an oversampling method is proposed based on Safe-Level synthetic minority oversampling technique (Safe-Level SMOTE), which is modified in terms of its k-nearest neighbours (KNN) function to make it fit better with high dimensional data. Using convolutional neural networks (CNN) as the classifier combined with ensemble bagging with differentiated sampling rate (DSR), the approach demonstrates better performances than the other state-of-the-art methods in handling imbalance situations.
Original language | English |
---|---|
Title of host publication | Proceedings of International Conference on Intelligent Data Engineering and Automated Learning |
Publisher | Springer Nature |
Pages | 54-64 |
Volume | 13113 |
DOIs | |
Publication status | Published - 23 Nov 2021 |