Abstract
© 2014 American Physical Society.Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard open quantum system methods eliminate all information on the environmental state to yield a tractable description of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian, we circumvent this limitation. Our theory provides straightforward access to important environmental properties that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a direct result, we show that the generation of robust system-environment correlations that persist into equilibrium (heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady state almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard perturbative techniques and are instead fully characterized by thermal states of the mapped system-collective coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.
Original language | English |
---|---|
Article number | 032114 |
Journal | Physical Review A |
Volume | 90 |
Issue number | 3 |
DOIs | |
Publication status | Published - 24 Sept 2014 |
Research Beacons, Institutes and Platforms
- Photon Science Institute