Evaluation of classical precipitation descriptions for γ″(Ni3Nb-D022) in Ni-base superalloys

I. J. Moore*, M. G. Burke, N. T. Nuhfer, E. J. Palmiere

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The growth/coarsening kinetics of (Formula presented.) precipitates have been found by numerous researchers to show an apparent correspondence with the classical (Ostwald ripening) equation outlined by Lifshitz, Slyozov and (separately) Wagner for a diffusion controlled regime. Nevertheless, a significant disparity between the actual precipitate size distribution shape and that predicted by LSW is frequently observed in the interpretation of these results, the origin of which is unclear. Analysis of the literature indicates one likely cause for this deviation from LSW for (Formula presented.) precipitates is the “encounter” phenomenon described by Davies et al. (Acta Metall 28(2):179–189, 1980) that is associated with secondary phases comprising a high volume fraction. Consequently, the distributions of both (Formula presented.) precipitates described in the literature (Alloy 718) and measured in this research in Alloy 625 are analysed through employing the Lifshitz–Slyozov-Encounter-Modified (LSEM) formulation (created by Davies et al.). The results of the LSEM analysis show good far better agreement than LSW with experimental distributions after the application of a necessary correction for what is termed in this research as “directional encounter”. Moreover, the activation energy for (Formula presented.) coarsening in Alloy 625 shows conformity with literature data once the effect of heterogeneous (on dislocations) precipitate nucleation at higher temperatures is accounted for.

    Original languageEnglish
    Pages (from-to)8665-8680
    Number of pages16
    JournalJournal of Materials Science
    Volume52
    Issue number14
    Early online date24 Apr 2017
    DOIs
    Publication statusPublished - Jul 2017

    Fingerprint

    Dive into the research topics of 'Evaluation of classical precipitation descriptions for γ″(Ni3Nb-D022) in Ni-base superalloys'. Together they form a unique fingerprint.

    Cite this