Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites

Saleh Zidan, Nick Silikas, Julfikar Haider, Abdulaziz Alhotan, Javad Jahantigh, Julian Yates

Research output: Contribution to journalArticlepeer-review

73 Downloads (Pure)

Abstract

High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the flexural strength of complete removable dentures made of HI heat-polymerised PMMA resin reinforced with zirconia nanoparticles at two different concentrations. The effect of fatigue loading on the flexural strength behaviour of the dentures was also investigated. A total of 30 denture specimens were fabricated from PMMA with different concentrations of zirconia nanoparticles: 0 (control), 3, and 5 wt.%. Ten specimens in each group were divided into two subgroups, with five specimens in each, to conduct both flexural strength and fatigue loading test of each of the subgroups. Fatigue loading was applied on the dentures using a mastication simulator and equivalent flexural strength was calculated with data from bending tests with and without fatigue cyclic loading. One-way analysis of variance (ANOVA) of the test data was conducted with the Bonferroni significant difference post-hoc test at a preset alpha value of 0.05. Paired t-test was employed to identify any difference between the specimens with and without the application of fatigue loading. The fractured surface of the denture specimens was examined with a scanning electron microscope (SEM). The bending tests demonstrated that the mean equivalent flexural strength of reinforced HI PMMA denture specimens with 5 wt.% zirconia nanoparticles increased significantly (134.9 ± 13.9 MPa) compared to the control group (0 wt.%) (106.3 ± 21.3 MPa) without any fatigue loading. The mean strength of the dentures with PMMA +3 wt.% zirconia also increased, but not significantly. Although the mean strength of all specimen groups subjected to fatigue loading slightly decreased compared to that of the specimen groups without any fatigue cyclic loading, this was not statistically significant. Denture specimens made of HI heat-polymerised PMMA reinforced with 5 wt.% zirconia nanoparticles had significantly improved equivalent flexural strength compared to that made of pure PMMA when the specimens were not subjected to any prior fatigue cyclic loading. In addition, the application of fatigue cyclic loading did not significantly improve the equivalent flexural strengths of all denture specimen groups. Within the limitations of this study, it can be concluded that the use of zirconia-impregnated PMMA in the manufacture of dentures does not result in any significant improvement for clinical application.
Original languageEnglish
Article number2580
JournalMaterials
Volume11
Issue number13
DOIs
Publication statusPublished - 5 Jun 2020

Keywords

  • Denture base
  • Fatigue loading
  • Flexural strength
  • High-impact PMMA
  • Nanocomposite
  • Zirconia (ZrO2)

Fingerprint

Dive into the research topics of 'Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites'. Together they form a unique fingerprint.

Cite this