Evaluation of land use regression models for NO2 and particulate matter in 20 European study areas: The ESCAPE project

Meng Wang, Rob Beelen, Xavier Basagana, Thomas Becker, Giulia Cesaroni, Kees De Hoogh, Audrius Dedele, Christophe Declercq, Konstantina Dimakopoulou, Marloes Eeftens, Francesco Forastiere, Claudia Galassi, Regina Gražulevičiene, Barbara Hoffmann, Joachim Heinrich, Minas Iakovides, Nino Künzli, Michal Korek, Sarah Lindley, Anna MolterGioia Mosler, Christian Madsen, Mark Nieuwenhuijsen, Harish Phuleria, Xanthi Pedeli, Ole Raaschou-Nielsen, Andrea Ranzi, Euripides Stephanou, Dorothee Sugiri, Morgane Stempfelet, Ming Yi Tsai, Timo Lanki, Orsolya Udvardy, Mihály J. Varró, Kathrin Wolf, Gudrun Weinmayr, Tarja Yli-Tuomi, Gerard Hoek, Bert Brunekreef

Research output: Contribution to journalArticlepeer-review

277 Downloads (Pure)

Abstract

Land use regression models (LUR) frequently use leave-one-out-cross- validation (LOOCV) to assess model fit, but recent studies suggested that this may overestimate predictive ability in independent data sets. Our aim was to evaluate LUR models for nitrogen dioxide (NO2) and particulate matter (PM) components exploiting the high correlation between concentrations of PM metrics and NO2. LUR models have been developed for NO2, PM2.5 absorbance, and copper (Cu) in PM10 based on 20 sites in each of the 20 study areas of the ESCAPE project. Models were evaluated with LOOCV and "hold-out evaluation (HEV)" using the correlation of predicted NO2 or PM concentrations with measured NO2 concentrations at the 20 additional NO2 sites in each area. For NO2, PM2.5 absorbance and PM10 Cu, the median LOOCV R2s were 0.83, 0.81, and 0.76 whereas the median HEV R 2 were 0.52, 0.44, and 0.40. There was a positive association between the LOOCV R2 and HEV R2 for PM2.5 absorbance and PM10 Cu. Our results confirm that the predictive ability of LUR models based on relatively small training sets is overestimated by the LOOCV R2s. Nevertheless, in most areas LUR models still explained a substantial fraction of the variation of concentrations measured at independent sites. © 2013 American Chemical Society.
Original languageEnglish
Pages (from-to)4357-4364
Number of pages7
JournalEnvironmental Science and Technology
Volume47
Issue number9
DOIs
Publication statusPublished - 7 May 2013

Fingerprint

Dive into the research topics of 'Evaluation of land use regression models for NO2 and particulate matter in 20 European study areas: The ESCAPE project'. Together they form a unique fingerprint.

Cite this