Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides

Zefei Wu, Shuigang Xu, Huanhuan Lu, Armin Khamoshi, Gui-Bin Liu, Tianyi Han, Yingying Wu, Jiangxiazi Lin, Gen Long, Yuheng He, Yuan Cai, Yugui Yao, Fan Zhang, Ning Wang

Research output: Contribution to journalArticlepeer-review

Abstract

In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs.
Original languageEnglish
JournalNature Communications
Volume7
DOIs
Publication statusPublished - 21 Sep 2016

Fingerprint

Dive into the research topics of 'Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides'. Together they form a unique fingerprint.

Cite this