TY - JOUR
T1 - Evidence for bicarbonate secretion by ameloblasts in a novel cellular model
AU - Bori, Erzsébet
AU - Guo, J
AU - Rácz, R
AU - Burghardt, B
AU - Földes, Anna
AU - Kerémi, B
AU - Harada, H
AU - Steward, Martin
AU - Den Besten, P
AU - Bronckers, A L J J
AU - Varga, G.
N1 - © International & American Associations for Dental Research 2016.
PY - 2016/5
Y1 - 2016/5
N2 - Formation and growth of hydroxyapatite crystals during amelogenesis generate a large number of protons that must be neutralized, presumably by HCO3 (-)ions transported from ameloblasts into the developing enamel matrix. Ameloblasts express a number of transporters and channels known to be involved in HCO3 (-)transport in other epithelia. However, to date, there is no functional evidence for HCO3 (-)transport in these cells. To address questions related to HCO3 (-)export from ameloblasts, we have developed a polarized 2-dimensional culture system for HAT-7 cells, a rat cell line of ameloblast origin. HAT-7 cells were seeded onto Transwell permeable filters. Transepithelial resistance was measured as a function of time, and the expression of transporters and tight junction proteins was investigated by conventional and quantitative reverse transcription polymerase chain reaction. Intracellular pH regulation and HCO3 (-)transport were assessed by microfluorometry. HAT-7 cells formed epithelial layers with measureable transepithelial resistance on Transwell permeable supports and expressed claudin-1, claudin-4, and claudin-8-key proteins for tight junction formation. Transport proteins previously described in maturation ameloblasts were also present in HAT-7 cells. Microfluorometry showed that the HAT-7 cells were polarized with a high apical membrane CO2permeability and vigorous basolateral HCO3 (-)uptake, which was sensitive to Na(+)withdrawal, to the carbonic anhydrase inhibitor acetazolamide and to H2DIDS inhibition. Measurements of transepithelial HCO3 (-)transport showed a marked increase in response to Ca(2+)- and cAMP-mobilizing stimuli. Collectively, 2-dimensional HAT-7 cell cultures on permeable supports 1) form tight junctions, 2) express typical tight junction proteins and electrolyte transporters, 3) are functionally polarized, and 4) can accumulate HCO3 (-)ions from the basolateral side and secrete them at the apical membrane. These studies provide evidence for a regulated, vectorial, basolateral-to-apical bicarbonate transport in polarized HAT-7 cells. We therefore propose that the HAT-7 cell line is a useful functional model for studying electrolyte transport by ameloblasts.
AB - Formation and growth of hydroxyapatite crystals during amelogenesis generate a large number of protons that must be neutralized, presumably by HCO3 (-)ions transported from ameloblasts into the developing enamel matrix. Ameloblasts express a number of transporters and channels known to be involved in HCO3 (-)transport in other epithelia. However, to date, there is no functional evidence for HCO3 (-)transport in these cells. To address questions related to HCO3 (-)export from ameloblasts, we have developed a polarized 2-dimensional culture system for HAT-7 cells, a rat cell line of ameloblast origin. HAT-7 cells were seeded onto Transwell permeable filters. Transepithelial resistance was measured as a function of time, and the expression of transporters and tight junction proteins was investigated by conventional and quantitative reverse transcription polymerase chain reaction. Intracellular pH regulation and HCO3 (-)transport were assessed by microfluorometry. HAT-7 cells formed epithelial layers with measureable transepithelial resistance on Transwell permeable supports and expressed claudin-1, claudin-4, and claudin-8-key proteins for tight junction formation. Transport proteins previously described in maturation ameloblasts were also present in HAT-7 cells. Microfluorometry showed that the HAT-7 cells were polarized with a high apical membrane CO2permeability and vigorous basolateral HCO3 (-)uptake, which was sensitive to Na(+)withdrawal, to the carbonic anhydrase inhibitor acetazolamide and to H2DIDS inhibition. Measurements of transepithelial HCO3 (-)transport showed a marked increase in response to Ca(2+)- and cAMP-mobilizing stimuli. Collectively, 2-dimensional HAT-7 cell cultures on permeable supports 1) form tight junctions, 2) express typical tight junction proteins and electrolyte transporters, 3) are functionally polarized, and 4) can accumulate HCO3 (-)ions from the basolateral side and secrete them at the apical membrane. These studies provide evidence for a regulated, vectorial, basolateral-to-apical bicarbonate transport in polarized HAT-7 cells. We therefore propose that the HAT-7 cell line is a useful functional model for studying electrolyte transport by ameloblasts.
U2 - 10.1177/0022034515625939
DO - 10.1177/0022034515625939
M3 - Article
C2 - 26792171
SN - 0022-0345
VL - 95
SP - 588
EP - 596
JO - Journal of Dental Research
JF - Journal of Dental Research
IS - 5
ER -