Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions

Kevin Morgan, Jamal Touitou, Jae-Soon Choi, Ciaran Coney, Christopher Hardacre, Josh A. Pihl, Cristina E. Stere, Mi-Young Kim, Caomhan Stewart, Alexandre Goguet, William P. Partridge

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modelling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered.
    Original languageEnglish
    Pages (from-to)1356-1381
    Number of pages26
    JournalA C S Catalysis
    Volume6
    Issue number2
    Early online date15 Jan 2016
    DOIs
    Publication statusPublished - 2016

    Fingerprint

    Dive into the research topics of 'Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions'. Together they form a unique fingerprint.

    Cite this