Abstract
Rapid online adaptation to changing tasks is an important problem in machine learning and, recently, a focus of meta-reinforcement learning. However, reinforcement learning (RL) algorithms struggle in POMDP environments because the state of the system, essential in a RL framework, is not always visible. Additionally, hand-designed meta-RL architectures may not include suitable computational structures for specific learning problems. The evolution of online learning mechanisms, on the contrary, has the ability to incorporate learning strategies into an agent that can (i) evolve memory when required and (ii) optimize adaptation speed to specific online learning problems. In this paper, we exploit the highly adaptive nature of neuromodulated neural networks to evolve a controller that uses the latent space of an autoencoder in a POMDP. The analysis of the evolved networks reveals the ability of the proposed algorithm to acquire inborn knowledge in a variety of aspects such as the detection of cues that reveal implicit rewards, and the ability to evolve location neurons that help with navigation. The integration of inborn knowledge and online plasticity enabled fast adaptation and better performance in comparison to some non-evolutionary meta-reinforcement learning algorithms. The algorithm proved also to succeed in the 3D gaming environment Malmo Minecraft.
Original language | English |
---|---|
Title of host publication | GECCO 2020 |
Subtitle of host publication | Proceedings of the 2020 Genetic and Evolutionary Computation Conference |
Place of Publication | New York, NY |
Publisher | Association for Computing Machinery |
Pages | 280-288 |
Number of pages | 9 |
ISBN (Print) | 9781450371285 |
DOIs | |
Publication status | Published - 26 Jun 2020 |
Keywords
- adaptive agent
- few-shots learning
- Hebbian learning
- lifelong learning
- neuroevolution
- neuromodulation
- self modifying network