TY - JOUR
T1 - Examining the effects of one- and three-dimensional spatial filtering analyses in Magnetoencephalography
AU - Johnson, Sam
AU - Prendergast, Garreth
AU - Hymers, Mark
AU - Green, Gary
PY - 2011
Y1 - 2011
N2 - Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used. © 2011 Johnson et al.
AB - Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used. © 2011 Johnson et al.
U2 - 10.1371/journal.pone.0022251
DO - 10.1371/journal.pone.0022251
M3 - Article
C2 - 21857916
VL - 6
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e22251
ER -