Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter‐Current Transport and Non‐Linear Diffusion

Monika S. Walczak, Hamidreza Erfani, Nikolaos K. Karadimitriou, Ioannis Zarikos, S. Majid Hassanizadeh, Vahid Niasar

Research output: Contribution to journalArticlepeer-review

Abstract

Solute transport in heterogeneous and fractured systems is a complex process given the permeability contrasts and the time scales discrepancies of transport in high-permeability versus low-permeability regions. We studied this phenomenon by injecting a solute (dyed water) in a micromodel comprising a single channel in contact with a porous medium and evaluated the mass exchange across the interface between the channel and porous medium (resembling the interface between free flow and porous media regions). Two sets of transport experiments were performed at three injection rates of 0.01, 0.1, and 1 ml/hr. Injection of dyed water into a clean-water-filled micromodel (referred to as the loading process hereafter) and injection of clean water into a dyed-water-filled micromodel (referred to as the unloading process hereafter). The dynamics of solute transport was recorded using time-lapse optical imaging. Our experimental results demonstrated the change of the mass exchange rate coefficient with time and a much smaller transfer rate coefficient during the unloading compared to the loading process. It is proposed that concentration-dependent counter-current advection-diffusion cause slow-down and further delay in the transport. These results may provide further explanation for the observed slow release of contamination in aquifers.
Original languageEnglish
Journal Water Resources Research
Volume58
Issue number6
Early online date13 Jun 2022
DOIs
Publication statusPublished - 16 Jun 2022

Fingerprint

Dive into the research topics of 'Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter‐Current Transport and Non‐Linear Diffusion'. Together they form a unique fingerprint.

Cite this