TY - JOUR
T1 - Experimental Study of the Flow and Thermal Development of a Row of Cooling Jets Impinging on a Rotating Concave Surface
AU - Launder, Brian
AU - Kounadis, D
AU - Iacovides, Hector
AU - Li, J-K
AU - Xu, X
PY - 2005
Y1 - 2005
N2 - The paper reports an experimental study of impingement cooling in a rotating passage of semi-cylindrical cross section. Cooling fluid is injected from a row of five jet holes along the centerline of the flat surface of the passage and strikes the concave surface. The cooling passage rotates orthogonally about an axis parallel to that of the jets. Tests have been carried out, using water, both within the passage and as the jet fluid, at a fixed Reynolds number of 15,000, for clockwise and counter-clockwise rotation. Local Nusselt number measurements, using the liquid-crystal technique, show that under stationary conditions a high Nusselt number region develops around each impingement point, with secondary peaks half-way between impingement points. Rotation reduces heat transfer, leads to the disappearance of all secondary peaks and also, surprisingly, of some of the primary peaks. Flow visualization tests suggest that these changes in thermal behavior are caused because rotation increases the spreading rate of the jets. LDA and PIV measurements are also presented. They show that under stationary conditions the five jets exhibit a similar behavior, with their cores remai
AB - The paper reports an experimental study of impingement cooling in a rotating passage of semi-cylindrical cross section. Cooling fluid is injected from a row of five jet holes along the centerline of the flat surface of the passage and strikes the concave surface. The cooling passage rotates orthogonally about an axis parallel to that of the jets. Tests have been carried out, using water, both within the passage and as the jet fluid, at a fixed Reynolds number of 15,000, for clockwise and counter-clockwise rotation. Local Nusselt number measurements, using the liquid-crystal technique, show that under stationary conditions a high Nusselt number region develops around each impingement point, with secondary peaks half-way between impingement points. Rotation reduces heat transfer, leads to the disappearance of all secondary peaks and also, surprisingly, of some of the primary peaks. Flow visualization tests suggest that these changes in thermal behavior are caused because rotation increases the spreading rate of the jets. LDA and PIV measurements are also presented. They show that under stationary conditions the five jets exhibit a similar behavior, with their cores remai
M3 - Article
SN - 1528-8900
VL - 127
SP - 222
EP - 229
JO - Transactions of the ASME, Journal of Turbomachinery
JF - Transactions of the ASME, Journal of Turbomachinery
IS - 0
ER -