Exploring the conformational space of membrane protein folds matching distance constraints.

Jean-Loup Faulon, Ken Sale, Malin Young

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Herein we present a computational technique for generating helix-membrane protein folds matching a predefined set of distance constraints, such as those obtained from NMR NOE, chemical cross-linking, dipolar EPR, and FRET experiments. The purpose of the technique is to provide initial structures for local conformational searches based on either energetic considerations or ad-hoc scoring criteria. In order to properly screen the conformational space, the technique generates an exhaustive list of conformations within a specified root-mean-square deviation (RMSD) where the helices are positioned in order to match the provided distances. Our results indicate that the number of structures decreases exponentially as the number of distances increases, and increases exponentially as the errors associated with the distances increases. We also found the number of solutions to be smaller when all the distances share one helix in common, compared to the case where the distances connect helices in a daisy-chain manner. We found that for 7 helices, at least 15 distances with errors up to 8 A are needed to produce a number of solutions that is not too large to be processed by local search refinement procedures. Finally, without energetic considerations, our enumeration technique retrieved the transmembrane domains of Bacteriorhodopsin (PDB entry1c3w), Halorhodopsin (1e12), Rhodopsin (1f88), Aquaporin-1 (1fqy), Glycerol uptake facilitator protein (1fx8), Sensory Rhodopsin (1jgj), and a subunit of Fumarate reductase flavoprotein (1qlaC) with Calpha level RMSDs of 3.0 A, 2.3 A, 3.2 A, 4.6 A, 6.0 A, 3.7 A, and 4.4 A, respectively.
    Original languageEnglish
    JournalProtein science : a publication of the Protein Society
    Volume12
    Issue number8
    DOIs
    Publication statusPublished - Aug 2003

    Fingerprint

    Dive into the research topics of 'Exploring the conformational space of membrane protein folds matching distance constraints.'. Together they form a unique fingerprint.

    Cite this