TY - JOUR
T1 - Exploring the urban water-energy-food nexus under environmental hazards within the Nile
AU - Elagib, Nadir Ahmed
AU - Gayoum Saad, Suhair A.
AU - Basheer, Mohammed
AU - Rahma, Abbas E.
AU - Gore, Emmanuela Darius Lado
PY - 2019/9/19
Y1 - 2019/9/19
N2 - The integrative approach of water, energy, and food nexus (WEF nexus) is now widely accepted to offer better planning, development, and operation of these resources. This study presents a first attempt towards understanding the WEF nexus of urban environments in the Nile River Basin under conditions of hydrological droughts and fluvial floods. A case study was conducted for the capital of Sudan, Khartoum, at the confluence of the White Nile and the Blue Nile for illustration. The results were based on analyses of river flow and water turbidity data, field observations, a printed questionnaire and an interview of farmers practicing irrigated agriculture, and hydropower modeling. The study analyzes indicators for the association of the river water resources environment (intra-annual regime, quantity, and quality), the status of urban irrigated agriculture, water treatment for domestic use, and hydropower generation under hydrological extremes, i.e. droughts and fluvial floods. It additionally examines the consequent interactions between the impacts on three sectors. The present study shows how floods and droughts impose impacts on seasonal river water quality and quantity, water treatment for domestic use, irrigated agriculture, and hydro-energy supply in an urban environment. The results demonstrate how the two hydrological phenomena determine the state of hydropower generation from dams, i.e. high energy production during floods and vice versa during droughts. Hydropower dams, in turn, could induce cons in the form of low fertile soils in the downstream due to sediment retention by the reservoir. Finally, present and potential options to minimize the above risks are discussed. This study is hoped to offer good support for integrated decision making to increase the resource use efficiency over the urban environment within the Nile Basin.
AB - The integrative approach of water, energy, and food nexus (WEF nexus) is now widely accepted to offer better planning, development, and operation of these resources. This study presents a first attempt towards understanding the WEF nexus of urban environments in the Nile River Basin under conditions of hydrological droughts and fluvial floods. A case study was conducted for the capital of Sudan, Khartoum, at the confluence of the White Nile and the Blue Nile for illustration. The results were based on analyses of river flow and water turbidity data, field observations, a printed questionnaire and an interview of farmers practicing irrigated agriculture, and hydropower modeling. The study analyzes indicators for the association of the river water resources environment (intra-annual regime, quantity, and quality), the status of urban irrigated agriculture, water treatment for domestic use, and hydropower generation under hydrological extremes, i.e. droughts and fluvial floods. It additionally examines the consequent interactions between the impacts on three sectors. The present study shows how floods and droughts impose impacts on seasonal river water quality and quantity, water treatment for domestic use, irrigated agriculture, and hydro-energy supply in an urban environment. The results demonstrate how the two hydrological phenomena determine the state of hydropower generation from dams, i.e. high energy production during floods and vice versa during droughts. Hydropower dams, in turn, could induce cons in the form of low fertile soils in the downstream due to sediment retention by the reservoir. Finally, present and potential options to minimize the above risks are discussed. This study is hoped to offer good support for integrated decision making to increase the resource use efficiency over the urban environment within the Nile Basin.
KW - Hydrological drought
KW - Fluvial flood
KW - Water turbidity
KW - Urban irrigated agriculture
KW - Water treatment
KW - Hydropower
U2 - 10.1007/s00477-019-01706-x
DO - 10.1007/s00477-019-01706-x
M3 - Article
JO - Stochastic Environmental Research and Risk Assessment
JF - Stochastic Environmental Research and Risk Assessment
SN - 1436-3240
ER -