Abstract
During early patterning of the vertebrate neuraxis, the expression of the paired-domain transcription factor Pax-3 is induced in the lateral portions of the posterior neural plate via posteriorizing signals emanating from the late organizer and posterior nonaxial mesoderm. Using a dominant- negative approach, we show in explant assays that Pax-3 inductive activities from the organizer do not depend on FGF, retinoic acid, or XWnt-8, either alone or in combination, suggesting that the organizer may produce an unknown posteriorizing factor. However, Pax-3 inductive signals from posterior nonaxial mesoderm are Wnt-dependent. We show that Pax-3 expression in the lateral neural plate expands in XWnt-8-injected embryos and is blocked by dominant-negative XWnt-8. Similarly, we show that the homeodomain transcription factor Msx-1, which like Pax-3 is an early marker of the lateral neural plate, is induced by posterior nonaxial mesoderm and blocked by dominant-negative XWnt-8. Finally, we show that Rohon-Beard primary neurons, a cell type that develops within the lateral neural plate, are also blocked in vivo by dominant-negative Xwnt-8. Together these data support a model in which patterning of the lateral neural plate by Wnt-mediated signals is an early event that establishes a posteriolateral domain, marked by Pax-3 and Msx-1 expression, from which Rohon-Beard cells and neural crest will subsequently arise.
Original language | English |
---|---|
Pages (from-to) | 366-380 |
Number of pages | 14 |
Journal | Developmental Biology |
Volume | 212 |
Issue number | 2 |
DOIs | |
Publication status | Published - 15 Aug 1999 |
Keywords
- Msx-1
- Pax-3
- Posteriorization
- Primary neurons
- Wnt
- Xenopus