Abstract
Two distinct calcitonin (CT) receptor (CTR)-encoding cDNAs (designated GC-2 and GC-10) were cloned and characterized from giant cell tumor of bone (GCT). Both GC-2 and GC-10 differ structurally from the human ovarian cell CTR (o-hCTR) that we cloned previously, but differ from each other only by the presence (GC-10) or absence (GC-2) of a predicted 16-amino acid insert in the putative first intracellular domain. Expression of all three CTR isoforms in COS cells demonstrated that GC-2 has a lower binding affinity for salmon (s) CT (Kd approximately 15 nM) than GC-10 or o-hCTR (Kd approximately 1.5 nM). Maximal stimulatory concentrations of CT resulted in a mean accumulation of cAMP in GC-2 transfected cells that was greater than eight times higher than in cells transfected with GC-10 after normalizing for the number of receptor-expressing cells. The marked difference in maximal cAMP response was also apparent after normalizing for receptor number. GC-2 also demonstrated a more potent ligand-mediated cAMP response compared with GC-10 for both human (h) and sCT (the EC50 values for GC-2 were approximately 0.2 nM for sCT and approximately 2 nM for hCT; EC50 values for GC-10 were approximately 6 nM for sCT and approximately 25 nM for hCT). Reverse transcriptase PCR of GCT RNA indicated that GC-2 transcripts are more abundant than those encoding for GC-10. In situ hybridization on GCT tissue sections demonstrated CTR mRNA expression in osteoclast-like cells. We localized the human CTR gene to chromosome 7 in band q22. The distinct functional characteristics of GC-2 and GC-10, which differ in structure only in the first intracellular domain, indicate that the first intracellular domain of the CTR plays a previously unidentified role in modulating ligand binding and signal transduction via the G protein/adenylate cyclase system.
Original language | English |
---|---|
Pages (from-to) | 2680-91 |
Number of pages | 12 |
Journal | The Journal of clinical investigation |
Volume | 95 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 1995 |
Keywords
- Animals
- Base Sequence
- Bone Neoplasms
- Calcitonin
- Cell Line
- Cercopithecus aethiops
- Chromosomes, Human, Pair 7
- Cloning, Molecular
- Cyclic AMP
- DNA Primers
- Gene Expression
- Genes
- Giant Cell Tumors
- Humans
- In Situ Hybridization
- In Vitro Techniques
- Ligands
- Molecular Sequence Data
- RNA, Messenger
- Receptors, Calcitonin
- Signal Transduction
- Structure-Activity Relationship
- Transfection
- Journal Article
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, P.H.S.