Projects per year
Abstract
Determining the fraction of the chemical space that can be processed in vivo by using natural and synthetic biology devices is crucial for the development of advanced synthetic biology applications. The extended metabolic space is a coding system based on molecular signatures that enables the derivation of reaction rules for metabolic reactions and the enumeration of all possible substrates and products corresponding to the rules. The extended metabolic space expands capabilities for controlling the production, processing, sensing, and the release of specific molecules in chassis organisms.
Original language | English |
---|---|
Title of host publication | Synthetic Metabolic Pathways |
Publisher | Springer Nature |
Pages | 83-96 |
DOIs | |
Publication status | Published - 2017 |
Publication series
Name | Methods in Molecular Biology |
---|
Keywords
- Metabolic modeling
- Enzyme reactions
- Metabolic pathways
Research Beacons, Institutes and Platforms
- Manchester Institute of Biotechnology
Fingerprint
Dive into the research topics of 'Extended Metabolic Space Modeling'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals
Scrutton, N. (PI), Azapagic, A. (CoI), Balmer, A. (CoI), Barran, P. (CoI), Breitling, R. (CoI), Delneri, D. (CoI), Dixon, N. (CoI), Faulon, J.-L. (CoI), Flitsch, S. (CoI), Goble, C. (CoI), Goodacre, R. (CoI), Hay, S. (CoI), Kell, D. (CoI), Leys, D. (CoI), Lloyd, J. (CoI), Lockyer, N. (CoI), Martin, P. (CoI), Micklefield, J. (CoI), Munro, A. (CoI), Pedrosa Mendes, P. (CoI), Randles, S. (CoI), Salehi Yazdi, F. (CoI), Shapira, P. (CoI), Takano, E. (CoI), Turner, N. (CoI) & Winterburn, J. (CoI)
14/11/14 → 13/05/20
Project: Research