Extracellular Vesicles Isolated from Human Induced Pluripotent Stem Cell-Derived Neurons Contain a Transcriptional Network

David A. Hicks, Alys C. Jones, Nicola J. Corbett, Kate Fisher, Stuart M. Pickering-brown, Mark P. Ashe, Nigel M. Hooper

Research output: Contribution to journalArticlepeer-review

Abstract

Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further analyse the mRNA and protein cargo of neuronal EVs, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30–100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons.
Original languageEnglish
JournalNeurochemical research
Early online date2 May 2020
DOIs
Publication statusE-pub ahead of print - 2 May 2020

Fingerprint

Dive into the research topics of 'Extracellular Vesicles Isolated from Human Induced Pluripotent Stem Cell-Derived Neurons Contain a Transcriptional Network'. Together they form a unique fingerprint.

Cite this