TY - JOUR
T1 - First-Principles Study of Adsorption of Actinide Complexes on Borophene
AU - Grover, Payal
AU - Oakley, Meagan S.
AU - Schreckenbach, Georg
PY - 2024/2/22
Y1 - 2024/2/22
N2 - Two- and three-dimensional materials can be used for the sensitive detection of adsorbates through charge-transfer mechanisms. Recently, a two-dimensional borophene material was synthesized in two distinct phases: line-defected planar and buckled. Here, we determine whether borophene can act as a competitive radioactive material sensor by using first-principles calculations to simulate the adsorption of actinide (uranium─U, neptunium─Np, and plutonium─Pu) complexes. Specific ligands are used (OH–, NO3–, CO32–) to generate model actinide complexes representing realistic environmental conditions. Various adsorption configurations are studied for each phase, and the corresponding adsorption energies, charge transfer, and electronic properties are reported. The calculated results reveal the presence of strong interactions due to the formation of a chemical bond between borophene and the oxo ligand of the adsorbate. Periodic trends are established, which indicate the strong affinity to Pu complexes in comparison to Np and U and that complexes containing carbonate bind more strongly overall. We find that the buckled phase engages in stronger adsorption than the planar phase; thus, in comparison to other 2D materials (silicene and germanene) and planar borophene, buckled borophene is a highly suitable candidate as a sensor for actinide complexes.
AB - Two- and three-dimensional materials can be used for the sensitive detection of adsorbates through charge-transfer mechanisms. Recently, a two-dimensional borophene material was synthesized in two distinct phases: line-defected planar and buckled. Here, we determine whether borophene can act as a competitive radioactive material sensor by using first-principles calculations to simulate the adsorption of actinide (uranium─U, neptunium─Np, and plutonium─Pu) complexes. Specific ligands are used (OH–, NO3–, CO32–) to generate model actinide complexes representing realistic environmental conditions. Various adsorption configurations are studied for each phase, and the corresponding adsorption energies, charge transfer, and electronic properties are reported. The calculated results reveal the presence of strong interactions due to the formation of a chemical bond between borophene and the oxo ligand of the adsorbate. Periodic trends are established, which indicate the strong affinity to Pu complexes in comparison to Np and U and that complexes containing carbonate bind more strongly overall. We find that the buckled phase engages in stronger adsorption than the planar phase; thus, in comparison to other 2D materials (silicene and germanene) and planar borophene, buckled borophene is a highly suitable candidate as a sensor for actinide complexes.
U2 - 10.1021/acs.jpcc.3c07613
DO - 10.1021/acs.jpcc.3c07613
M3 - Article
SN - 1932-7447
JO - The Journal of Physical Chemistry C
JF - The Journal of Physical Chemistry C
ER -