Flexible modeling for anatomically-based cardiac conduction system construction

Daniel Romero*, Viviana Zimmerman, Rafael Sebastian, Alejandro F. Frangi

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

We present a method to automatically deploy the peripheral section of the cardiac conduction system in ventricles. The method encodes anatomical information thorough rules that ensure that Purkinje network structures generated are realistic and comparable to those observed in ex-vivo studies. The core methodology is based in non-deterministic production rules that are parameterized by means of statistical functions. Input parameters allow the construction of a great diversity of Purkinje structures that could be incorporated in fine element ventricular models to perform electrophysiology simulations. Resulting Purkinje trees show good geometrical approximations of Purkinje core network and bundles when compared to histological diagrams and do not require user interaction. Simulations carried out with these models result in activation sequences remarkably similar to micro-electrode electrical mapping studies.

Original languageEnglish
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages779-782
Number of pages4
DOIs
Publication statusPublished - 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: 31 Aug 20104 Sept 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Conference

Conference2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period31/08/104/09/10

Fingerprint

Dive into the research topics of 'Flexible modeling for anatomically-based cardiac conduction system construction'. Together they form a unique fingerprint.

Cite this