Fluorinated trehalose analogues for cell surface engineering and imaging of Mycobacterium tuberculosis

Collette S Guy, James A Gott, Jonathan Ramírez-Cárdenas, Christopher de Wolf, Christopher M Furze, Geoff West, Juan C Muñoz-García, Jesus Angulo, Elizabeth Fullam

Research output: Contribution to journalArticlepeer-review

Abstract

The sensitive, rapid and accurate diagnosis of Mycobacterium tuberculosis (Mtb) infection is a central challenge in controlling the global tuberculosis (TB) pandemic. Yet the detection of mycobacteria is often made difficult by the low sensitivity of current diagnostic tools, with over 3.6 million TB cases missed each year. To overcome these limitations there is an urgent need for next-generation TB diagnostic technologies. Here we report the use of a discrete panel of native 19F-trehalose (F-Tre) analogues to label and directly visualise Mtb by exploiting the uptake of fluorine-modified trehalose analogues via the mycobacterial trehalose LpqY-SugABC ATP-binding cassette (ABC) importer. We discovered the extent of modified F-Tre uptake correlates with LpqY substrate recognition and characterisation of the interacting sites by saturation transfer difference NMR coupled with molecular dynamics provides a unique glimpse into the molecular basis of fluorine-modified trehalose import in Mtb. Lipid profiling demonstrated that F-Tre analogues modified at positions 2, 3 and 6 are incorporated into mycobacterial cell-surface trehalose-containing glycolipids. This rapid one-step labelling approach facilitates the direct visualisation of F-Tre-labelled Mtb by Focused Ion Beam (FIB) Secondary Ion Mass Spectrometry (SIMS), enabling detection of the Mtb pathogen. Collectively, our findings highlight that F-Tre analogues have potential as tools to probe and unravel Mtb biology and can be exploited to detect and image TB.

Original languageEnglish
Pages (from-to)13966-75
Number of pages10
JournalChemical Science
Volume15
Issue number34
DOIs
Publication statusE-pub ahead of print - 12 Aug 2024

Fingerprint

Dive into the research topics of 'Fluorinated trehalose analogues for cell surface engineering and imaging of Mycobacterium tuberculosis'. Together they form a unique fingerprint.

Cite this