Abstract
PURPOSE: We examined agreement among experts in the assessment of corneal subbasal nerve tortuosity.
METHODS: Images of corneal subbasal nerves were obtained from investigators at seven sites (Auckland, Boston, Linköping, Manchester, Oslo, Rostock, and Sydney) using laser-scanning in vivo confocal microscopy. A set of 30 images was assembled and ordered by increasing tortuosity by 10 expert graders from the seven sites. In a first experiment, graders assessed tortuosity without a specific definition and performed grading three times, with at least 1 week between sessions. In a second experiment, graders assessed the same image set using four focused tortuosity definitions. Intersession and intergrader repeatability for the experiments were determined using the Spearman rank correlation.
RESULTS: Expert graders without a specific tortuosity definition had high intersession (Spearman correlation coefficient 0.80), but poor intergrader (0.62) repeatability. Specific definitions improved intergrader repeatability to 0.79. In particular, tortuosity defined by frequent small-amplitude directional changes (short range tortuosity) or by infrequent large-amplitude directional changes (long range tortuosity), indicated largely independent measures and resulted in improved repeatability across the graders. A further refinement, grading only the most tortuous nerve in a given image, improved the average correlation of a given grader's ordering of images with the group average to 0.86 to 0.90.
CONCLUSIONS: Definitions of tortuosity specifying short or long-range tortuosity and considering only the most tortuous nerve in an image improved the agreement in tortuosity grading among a group of expert observers. These definitions could improve accuracy and consistency in quantifying subbasal nerve tortuosity in clinical studies.
Original language | English |
---|---|
Pages (from-to) | 5102-9 |
Number of pages | 8 |
Journal | Investigative ophthalmology & visual science |
Volume | 56 |
Issue number | 9 |
DOIs | |
Publication status | Published - Aug 2015 |
Keywords
- Cornea
- Humans
- Microscopy, Confocal
- Ophthalmic Nerve
- Torsion Abnormality
- Journal Article
- Multicenter Study