Force networks, torque balance and Airy stress in the planar vertex model of a confluent epithelium

Research output: Contribution to journalArticlepeer-review

Abstract

The vertex model is a popular framework for modelling tightly packed biological cells, such as confluent epithelia. Cells are described by convex polygons tiling the plane and their equilibrium is found by minimizing a global mechanical energy, with vertex locations treated as degrees of freedom. Drawing on analogies with granular materials, we describe the force network for a localized monolayer and derive the corresponding discrete Airy stress function, expressed for each N-sided cell as N scalars defined over kites covering the cell. We show how a torque balance (commonly overlooked in implementations of the vertex model) requires each internal vertex to lie at the orthocentre of the triangle formed by neighbouring edge centroids. Torque balance also places a geometric constraint on the stress in the neighbourhood of cellular trijunctions, and requires cell edges to be orthogonal to the links of a dual network that connect neighbouring cell centres and thereby triangulate the monolayer. We show how the Airy stress function depends on cell shape when a standard energy functional is adopted, and discuss implications for computational implementations of the model.
Original languageEnglish
Pages (from-to)0
JournalProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume476
Issue number2237
Early online date13 May 2020
DOIs
Publication statusPublished - 27 May 2020

Fingerprint

Dive into the research topics of 'Force networks, torque balance and Airy stress in the planar vertex model of a confluent epithelium'. Together they form a unique fingerprint.

Cite this