Abstract
The mechanism of green rust sulfate (GR-SO4) formation was determined using a novel in situ approach combining time-resolved synchrotron-based wide-angle X-ray scattering (WAXS) with highly controlled chemical synthesis and electrochemical (i.e., Eh and pH) monitoring of the reaction. Using this approach,GR-SO4 was synthesized under strictly anaerobic conditions by coprecipitation from solutions with known Fe II/FeIII ratios (i.e., 1.28 and 2) via the controlled increase of pH. The reaction in both systems proceeded via a three-stage precipitation and transformation reaction. During the first stage,schwertmannite (Fe8O8(OH)4.5(SO4)1.75) precipitated directly from solution at pH 2.8-4.5. With increasing pH (>5), Fe2+ ions adsorb to the surface of schwertmannite and catalyze its transformation to goethite (α-FeOOH) during the second stage of the reaction. In the third stage, the hydrolysis of the adsorbed Fe2+ ions on goethite initiates its transformation to GR-SO4 at pH >7. The GR-SO4 then continues to crystallize up to pH ∼8.5. These results suggest that with an FeII/FeIII ratio of 2 in the initial solution the structural FeII/FeIII of the GR-SO4 will be close to that of the starting composition. © 2010 American Chemical Society.
Original language | English |
---|---|
Pages (from-to) | 6593-6603 |
Number of pages | 10 |
Journal | Langmuir |
Volume | 26 |
Issue number | 9 |
DOIs | |
Publication status | Published - 4 May 2010 |