Gain Modulation by Graphene Plasmons in Aperiodic Lattice Lasers

Subhasish Chakraborty, O. P. Marshall, Thomas Folland, Y.-J. Kim, Alexander Grigorenko, Konstantin Novoselov

    Research output: Contribution to journalArticlepeer-review

    155 Downloads (Pure)


    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission.This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials withmajor implications across photonics,material sciences, and nanotechnology.
    Original languageEnglish
    Article numberaad2930
    Pages (from-to)246-248
    Number of pages2
    Issue number6270
    Publication statusPublished - 15 Jan 2016


    • THz, QCL, Graphene, Plasmons


    Dive into the research topics of 'Gain Modulation by Graphene Plasmons in Aperiodic Lattice Lasers'. Together they form a unique fingerprint.

    Cite this