Abstract
In recent work, Belishev and Sharafutdinov show that the generalized Dirichlet to Neumann (DN) operator Λ on a compact Riemannian manifold M with boundary ∂M determines de Rham cohomology groups of M. In this paper, we suppose G is a torus acting by isometries on M. Given X in the Lie algebra of G and the corresponding vector field XM on M, Witten defines an inhomogeneous coboundary operator dXM=d+ιXM on invariant forms on M. The main purpose is to adapt Belishev-Sharafutdinov's boundary data to invariant forms in terms of the operator dXM in order to investigate to what extent the equivariant topology of a manifold is determined by the corresponding variant of the DN map. We define an operator ΛXM on invariant forms on the boundary which we call the XM-DN map and using this we recover the XM-cohomology groups from the generalized boundary data (∂M,ΛXM). This shows that for a Zariski-open subset of the Lie algebra, ΛXM determines the free part of the relative and absolute equivariant cohomology groups of M. In addition, we partially determine the ring structure of XM-cohomology groups from ΛXM. These results explain to what extent the equivariant topology of the manifold in question is determined by ΛXM. © 2011 Elsevier B.V.
Original language | English |
---|---|
Pages (from-to) | 823-832 |
Number of pages | 9 |
Journal | Topology and its Applications |
Volume | 159 |
Issue number | 3 |
DOIs | |
Publication status | Published - 15 Feb 2012 |
Keywords
- Algebraic topology
- Cup product (ring structure)
- Dirichlet to Neumann operator
- Equivariant cohomology
- Equivariant topology
- Group actions