Abstract
Generative Adversarial Networks (GANs) are gaining increasing attention as a means for synthesising data. So far much of this work has been applied to use cases outside of the data confidentiality domain with a common application being the production of artificial images. Here we consider the potential application of GANs for the purpose of generating synthetic census microdata. We employ a battery of utility metrics and a disclosure risk metric (the Targeted Correct Attribution Probability) to compare the data produced by tabular GANs with those produced using orthodox data synthesis methods.
Original language | English |
---|---|
Title of host publication | 2021 Expert Meeting on Statistical Data Confidentiality |
Publication status | Accepted/In press - 16 Nov 2021 |
Research Beacons, Institutes and Platforms
- Cathie Marsh Institute