Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Original language | English |
---|---|
Article number | 2359 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 19 Mar 2024 |
Fingerprint
Dive into the research topics of 'Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets'. Together they form a unique fingerprint.Datasets
-
Summary statistics of UK Biobank blood pressure genome-wide association studies (GWAS) using 337,422 unrelated white European individuals
Xu, X. (Creator), Khunsriraksakul, C. (Contributor), Eales, J. M. (Contributor), Rubin, S. (Contributor), Scannali, D. (Contributor), Saluja, S. (Contributor), Talavera, D. (Contributor), Markus, H. (Contributor), Wang, L. (Contributor), Drzal, M. (Contributor), Maan, A. (Contributor), Lay, A. C. (Contributor), Prestes, P. R. (Contributor), Regan, J. (Contributor), Diwadkar, A. R. (Contributor), Denniff, M. (Contributor), Rempega, G. (Contributor), Ryszawy, J. (Contributor), Król, R. (Contributor), Dormer, J. P. (Contributor), Szulinska, M. (Contributor), Walczak, M. (Contributor), Antczak, A. (Contributor), Matías-García, P. R. (Contributor), Waldenberger, M. (Contributor), Woolf, A. S. (Contributor), Keavney, B. (Contributor), Zukowska-Szczechowska, E. (Contributor), Wystrychowski, W. (Contributor), Zywiec, J. (Contributor), Bogdanski, P. (Contributor), Danser, A. H. J. (Contributor), Samani, N. J. (Contributor), Guzik, T. J. (Contributor), Morris, A. (Contributor), Liu, D. J. (Contributor), Charchar, F. J. (Contributor) & Tomaszewski, M. (Contributor), University of Manchester Figshare, 22 Mar 2024
DOI: 10.48420/24851436, https://figshare.manchester.ac.uk/articles/dataset/UK_Biobank_blood_pressure_GWAS_summary_statistics_using_337_422_unrelated_white_European_individuals/24851436/2
Dataset
-
Sample-size-balanced Genotype-Tissue Expression (GTEx) v8 prediction models for transcriptome-wide association studies (TWAS)
Xu, X. (Creator), University of Manchester Figshare, 22 Mar 2024
DOI: 10.48420/24871794, https://figshare.manchester.ac.uk/articles/dataset/Sample-size-balanced_GTEx_v8_TWAS_models/24871794
Dataset
-
Normalised gene expression, miRNA expression and urinary transcriptomic data from Human Kidney Tissue Resource (HKTR)
Xu, X. (Creator), University of Manchester Figshare, 22 Mar 2024
DOI: 10.48420/24871785, https://figshare.manchester.ac.uk/articles/dataset/Normalised_gene_expression_miRNA_expression_and_urinary_transcriptomic_data_from_HKTR/24871785
Dataset