TY - JOUR
T1 - Giant magnetoresistance of Dirac plasma in high-mobility graphene
AU - Xin, Na
AU - Lourembam, James
AU - Kumaravadivel, Piranavan
AU - Kazantsev, Alexander
AU - Wu, Zefei
AU - Mullan, Ciaran
AU - Barrier, Julien
AU - Geim, Alexandra
AU - Grigorieva, Irina
AU - Mishchenko, Artem
AU - Principi, Alessandro
AU - Fal'ko, Vladimir
AU - Ponomarenko, Leonid
AU - Geim, Andre
AU - Berdyugin, Alexey
PY - 2023/4/12
Y1 - 2023/4/12
N2 - The most recognizable feature of graphene’s electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity
1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron–hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering
3–5 and hydrodynamic flow
6–8. However, little is known about the plasma’s behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering
3–5,9–14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron–hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening
15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals
12–14 and so-called quantum linear magnetoresistance predicted for Weyl metals
16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.
AB - The most recognizable feature of graphene’s electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity
1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron–hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering
3–5 and hydrodynamic flow
6–8. However, little is known about the plasma’s behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering
3–5,9–14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron–hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening
15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals
12–14 and so-called quantum linear magnetoresistance predicted for Weyl metals
16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.
KW - Dirac plasma
KW - Magnetoresistance
KW - High-mobility graphene
UR - https://www.nature.com/nature/volumes/616/issues/7956
U2 - 10.1038/s41586-023-05807-0
DO - 10.1038/s41586-023-05807-0
M3 - Article
SN - 0028-0836
VL - 616
SP - 270
EP - 274
JO - Nature
JF - Nature
IS - 7956
ER -